Способы экономии электроэнергии приводных электрических машин строительных механизмов

Счастная Е. С.

Белорусский национальный технический университет

Одним из основных способов сокращения непроизводительного расхода энергии в строительстве является рациональное использование электроэнергии в электрическом приводе.

В основном, в строительстве эксплуатируются нерегулируемые электроприводы на базе асинхронных двигателей с короткозамкнутым ротором (АДКР): бетоно- и растворосмесительные насосы, транспортеры, вентиляторы, компрессоры и др. Экономия энергии может быть достигнута как в самом электроприводе, так и при реализации нормального технологического обслуживания этих двигателей различными способами. Одним из способов уменьшения суммарных потерь активной мощности в электрической сети и двигателе является замена незагруженных электродвигателей электродвигателями меньшей мощности. Эти потери можно определить по формуле:

$$\Delta P_{\Sigma} = [Q_{X}(1 - K_{H}^{2}) + K_{H}^{2}Q_{H}]K_{\Im} + \Delta P_{X} + K_{H}^{2}\Delta P,$$

где $Q_{\rm X} = \sqrt{3} U_{\rm H} I_{\rm X} \sin \phi_{\rm X}$ — реактивная мощность, потребляемая двигателем при холостом ходе, квар;

$$K_{
m H} = {}^{P}/{}_{P_{
m H}} -$$
 коэффициент нагрузки двигателя;

 $Q_{\rm H} = rac{P_{
m H}}{\eta_{
m H}} {
m tg} \phi_{
m H}$ — реактивная мощность двигателя при номинальной нагрузке, квар;

$$K_3 = 0.1 - 0.15 - коэффициент потерь, кВт/квар;$$

 $\Delta P_{\rm X} = \sqrt{3} U_{\rm H} I_{\rm X} \cos \phi_{\rm X}$ — потери активной мощности при холостом ходе двигателя, кВт;

 $\Delta P = P_{\rm H} \left(\frac{1 - \eta_{\rm H}}{\eta_{\rm H}} \right) \left(\frac{1}{1 + \gamma} \right)$ — прирост потерь активной мощности в электродвигателе при возрастании нагрузки до номинальной, кВт;

 $\gamma = \frac{\Delta P_{X},\%}{(100-\eta_{H},\%)-\Delta P_{X},\%}$ — расчетный коэффициент, зависящий от конструкции двигателя;

 ΔP_X , $\% = \frac{\Delta P_{XX}}{P_H} 100\% -$ потери холостого хода в процентах от активной мощности, потребляемой двигателем при номинальной нагрузке.

Значение $\sin \phi_X$ можно определить по коэффициенту мощности двигателя на холостом ходу $\cos \phi_X$. Средние величины токов холостого хода I_X двигателей и $\cos \phi_X$ определяются из опыта холостого хода конкретного двигателя.