На первом этапе проводились стендовые исследования. Стендовые исследования проводились на дизелях с турбонаддувом и без. При этом использовались различные процентные добавки водородосодержащих добавок к воздушному заряду, относительно массовой доли топлива, с целью определения оптимального процентного соотношения. Исследования проводились на режимах холостого хода, а так же малых и средних нагрузках.

В результате проведенных стендовых исследований дизелей было установлено, что 4-5% от массы топлива водородосодержащая добавка улучшает топливную экономичность на 2-5% в зависимости от режима работы двигателя.

Во время испытаний так же проводились замеры концентраций вредных веществ в отработавших газах. Установлено, что использование водородосодержащих добавок к воздушному заряду дизелей приводит к снижению содержания оксида углерода, углеводородов и дымности отработавших газов, однако, на некоторых режимах наблюдалось незначительное увеличение оксидов азота, что свидетельствует о повышении температуры рабочего цикла.

УДК 621.891

Динамика формирования толщины смазочного слоя в условиях точечного контакта

Глухонец А.А. Национальный транспортный университет (г. Киев, Украина)

Цель работы — измерение ультратонкой толщины смазочного слоя (до 0,02 мкм), осуществлялось на специально изготовленном стенде, который позволил методом оптической интерферометрии исследовать распределение толщины смазочного слоя в точечном (круговом) контакте трения и распределение смазочного материала вокруг контакта с учетом картины подведения смазочного материала и температурного режима смазки.

Целью данного экспериментального исследования является влияние параметра скорости качения (условие качения с проскальзыванием 20%) на кинетику формирования толщины смазочного слоя в центральной зоне контакта. При исследовании использовались 5 марок смазочных материалов (для примера приведем три из них): 1) моторное масло SAE 15w40 LUX; 2) моторное масло М8Г2К; 3) моторное масло М10Г2К. Диапазон изменения скоростей составлял от 0 до 1,2 м/с; температура масел на протяжении эксперимента составляла 20°С; контактное напряжение составляла 251,5 МПа. Толщина смазочного слоя в контакте определялась методом оптической интерференции.

При использовании в качестве смазочного материала моторного масла SAE 15w40 LUX установлено, что формирование толщины смазочного слоя происходит при скорости $V\Sigma \kappa = 0{,}068$ м/с, действительная толщина смазочного слоя составила $h_{\rm d}=0{,}123\times10^{-6}$ м, при этом реализуется предельный режим смазки $\lambda=1{,}231$. С увеличением скорости толщина смазочного слоя растет, и при скорости $V\Sigma \kappa=0{,}365$ м/с она составляет $h_{\rm d}=0{,}409\times10^{-6}$ м, при этом реализуется гидродинамический режим смазки $\lambda=4{,}087$, который доминирует до $V\Sigma \kappa=0{,}675$ м/с.

Используя в качестве смазочного материала моторное масло М8Г2К установлено, что при суммарной скорости качения V2к = 0,045 м/с происходит формирование толщины масляной пленки, которая составляет hд = 0,124 \times 10 $^{-6}$ м, при этом реализуется предельный режим смазки λ = 1,24. Достигнув V2к = 0,351 м/с толщина смазочного слоя составляет hд = 0,411 \times 10 $^{-6}$ м, при этом устанавливается гидродинамический режим смазки λ = 4,113, характерный до V2к> 0,654м/с.

Используя в качестве смазочного материала моторное масло М10Г2К установлено, что при суммарной скорости качения V Σ k = 0,076 м/с происходит формирование толщины масляной пленки, которая составляет hд = 0,0796 × 10⁻⁶ м, при этом реализуется предельный режим смазки λ = 1,223. Достигнув V Σ k = 0,5 м/с толщина смазочного слоя составляет hд = 0,406 × 10^{-6} м, и устанавливается гидродинамический режим смазки λ = 4,061.

Анализ экспериментальных данных относительно смазочного действия масел различного состава показывает, что кинетика формирования толщины смазочного слоя в период пуска зависит от скорости качения - при росте скорости качения происходит повышение толщины смазочного слоя в центральной зоне контакта, что обуславливает переход от предельного до гидродинамического режима смазки.

УДК 629.113

Влияние давления в выпускной системе двигателя на показатели наполнения и очистки цилиндров двигателя

Опанасюк Е.Г. 1 , Бегерский Д.Б. 1 , Опанасюк А.Е. 1 , Ноженко Е.С. 2 1 Житомирский государственный технологический университет, 2 Восточноукраинский национальный университет имени Владимира Даля

Одной из основных задач, стоящих перед автомобильным двигателестроением, является улучшение показателей работы двигателей путем совершенствования их рабочих процессов, в частности, улучшения показателей наполнения цилиндров свежим зарядом и очистки цилиндров от отработанных газов