давлением поступает в объемную роторно-лопастного типа машину для совершения механической работы, далее поступает в холодильник для понижения давления за счет уменьшения температуры и цикл замыкается поступлением охлажденного воздуха в нагреватель.

В конструкции расширительной машины лопасть разделяет с одной стороны область повышенного давления воздуха совершающего работу, со второй - выталкивает воздух с пониженным давлением после процесса расширения. Имеется механизм соединения области повышенного давления воздуха с объемом над лопастью совершающей механическую работу.

Функциональный анализ параметров, обеспечивающих эффективность данной конструкции, показывает, что рационально увеличивать площадь лопасти и устанавливать повышающий редуктор для достижения нужной частоты вращения.

В настоящий момент разработана математическая модель. По результатам моделирования определяются оптимальные геометрические параметры лопастной машины.

УДК 621.34

Улучшение топливной экономичности и экологических показателей бензиновых двигателей добавкой водородсодержащего газа к воздушному заряду

Шуба Е.В.

Национальный транспортный университет (г. Киев, Украина)

Бензиновые двигатели есть одними из основных источников загрязнения окружающей среды, а также потребителей нефтяных топлив. Особо неблагоприятными с точки зрения топливной экономичности и экологических показателей являются режимы холостого хода и малых нагрузок. Для улучшения этих показателей двигателей можно использовать водородсодержащие добавки, которые интенсифицируют процесс сгорания. В качестве такой добавки можно использовать газ, полученный при помощи электролиза водных растворов гидроксида калия и состоит из водорода и кислорода (H_2/O_2).

На кафедре двигателей и теплотехники Национального транспортного университета ведутся исследования влияния добавки продуктов электролиза воды к воздушному заряду на топливную экономичность и экологические показатели разных типов двигателей. Проведены стендовые испытания бензиновых двигателей с карбюраторной системой питания и системой впрыска при работе с добавкой водородсодержащего газа в режимах малых нагрузок и холостого хода. Использование смеси водорода с кислородом в качестве добавки к воздушному заряду бензинового двигателя

положительно влияет на топливную экономичность и концентрацию большинства токсичных веществ отработанных газов. Экономия топлива с учетом затрат электроэнергии на получение газа в режиме холостого хода составляет 6,83 %. Вместе с тем с добавлением смеси H_2/O_2 к воздушному заряду наблюдается тенденция к снижению выбросов продуктов неполного сгорания и рост выбросов оксидов азота, что может быть следствием повышения максимального давления и температуры в камере сгорания двигателя. Полученные результаты свидетельствуют о положительном влиянии газа H_2/O_2 на показатели работы бензиновых двигателей. Добавка водородсодержащего газа ведет к снижению расхода топлива и уменьшению концентраций продуктов неполного сгорания в отработавших газах.

УДК 621.43

Исследование трёхкомпонентного каталитического нейтрализатора

Лисовал А.А., Нижник М.Е., Свистун Ю.А. Национальный транспортный университет (г. Киев, Украина)

На бензиновом двигателе фирмы Volkswagen модели VW ВВУ (1,39 л) были проведены испытания экспериментального 3-х компонентного каталитического нейтрализатора (КН), который разработан в Национальном техническом университете «ХПИ» (г. Харьков). Двигатель с базовой комплектацией отвечает нормам Евро-4. Экспериментальный КН был установлен вместо основного (2-го блока) нейтрализатора, предварительный (1-й блок) нейтрализатор не меняли.

Сравнительные стендовые испытания (нагрузочные характеристики) подтвердили работоспособность экспериментального КН. Основная очистка отработавших газов (ОГ) осуществлялась в предварительном 1-м блоке КН. Экспериментальный КН имел наибольшую эффективность при нейтрализации NOx -93...98 %, которая зависит от действия катализатора.

Для подтверждения этого заключения проведены испытания на газовом двигателе $8\Gamma 410/8,8$, который работал на привод электрогенератора (30 кВт при 1500 мин⁻¹). Экспериментальный КН был установлен после выпускного коллектора левой группы цилиндров.

Двигатель работал на метане. Система дозирования газового топлива интегрирована с автоматическим регулятором поддержания астатической характеристики частоты вращения коленчатого вала. Система собрана на основе узлов регулятора HEINZMANN, поддерживает постоянный состав горючей смеси при изменении нагрузки.

Газовый анализ ОГ двигателя 8ГЧ10/8,8 показал, что наилучшая эффективность КН при коэффициенте избытка воздуха 1,03, а топливная