ВЛИЯНИЕ СЛУЧАЙНОЙ НЕОДНОРОДНОСТИ МАТЕРИАЛА НА УСТОЙЧИВОСТЬ ПЛАСТИНЫ ПРИ МАЛЫХ ДЕФОРМАЦИЯХ

Чигарев В.А., Чигарев Ю.В.

Введение

Устойчивость стохастически неоднородных реологических сложных сред относится к мало изученым вопросам современной механики, а их исследование сопряжено со значительными трудностями вычислительного и принципиального характера. Это прежде всего связано с приведением уравнения стохастической среды к виду удобному для исследования устойчивости, а так же с применением критериев устойчивости, которые разработаны в основном для однородных сред.

В данной работе стохастически неоднородная среда с трансляционным упрочнением преобразуется к однородной (в среднем) среде со сложными реологическими свойствами для которой в квазистатической постановке записываются уравнения устойчивости [1].

Предполагается, что докритические деформации малы. Это дает возможность использовать вспомогательные гипотезы кинематического и динамического характера для перехода от трехмерных уравнений к двумерным.

Исследована устойчивость пластины из случайно-неоднородного упруговязкопластического материала с детерминированными усилиями вдоль одной оси.

Следует отметить, что обзор и классификации постановок детерминированных задач об устойчивости прямоугольных пластин можно найти в монографии [2]. Там же дан сравнительный анализ значений критических нагрузок полученных по различным уравнениям устойчивости. В частности, доказано, что для композиционных материалов, как в пределах упругости, так и за пределом упругости привлечение прикладных теорий, построенных путем введения дополнительных гипотез (например, гипотезы Кирхгофа-Лява) не всегда приводит к точному результату.

1. Методы исследований.

1. Рассмотрим неоднородную среду в которой при упругом деформировании связь между напряжениями и деформациями определяется законом Гука

$$\sigma_{ij}(x) = \lambda_{ijke}(x)e_{kl}^{e}(x), \qquad (1.1)$$

где σ_{ij} – тензор напряжений, e^e_{kl} – тензор упругих деформаций, $\lambda_{ijkl}(x)$ тензор упругих модулей, зависящий от пространственных координат x_i (i, j, k, l = 1,2,3). При отсутствии массовых сил уравнения равновесия запишем в виде

$$\left[\sigma_{ik}\left(\delta_{ik} + u_{i,k}\right)\right]_{i} = 0. \tag{1.2}$$

Граничные условия

$$\left[\sigma_{jk}\left(\delta_{ik} + u_{i,k}\right)\right] n_j = p_i. \tag{1.3}$$

В (1.2) и (1.3) δ_{ik} — символ Кронекера, u_i — перемещения, n_j — нормаль к поверхности тела, p_i — поверхностные силы.

При наступлении в точках тела пластического состояния функция нагружения в общем случае будет иметь вид

$$f(\sigma_{ii}, e_{ii}^p, \chi_i, k_i) = 0, \qquad (1.4)$$

здесь e_{ij}^{p} – пластические деформации, $\chi_{i}(x_{i})$ – параметры упрочнения, $k_{i}(x_{i})$ – материальные коэффициенты, зависящие от пространственных координат. Полная деформация в точках тела будет

$$e_{ij} = e_{ij}^e + e_{ij}^p. (1.5)$$

Условия Коши

$$e_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i}). \tag{1.6}$$

Представим функцию нагружения через девиатор напряжения [3]

$$S_{ij} = \sigma_{ij} - \delta_{ij}\sigma, \ \sigma = \frac{1}{3}(\sigma_{11} + \sigma_{22} + \sigma_{33}) = \frac{1}{3}\sigma_{ii}$$

в виде

$$(S_{ij} - c(x)e_{ij}^p - \eta(x)\dot{e}_{ij}^p) (S_{ij} - c(x)e_{ij}^p - \eta(x)\dot{e}_{ij}^p) - k^2 = 0,$$
 (1.7)

здесь c(x) – коэффициент упрочнения, $\eta(x)$ – коэффициент вязкости, k(x) – коэффициент пластичности.

Ассоциированный закон течения имеет вид

$$\dot{e}_{ij}^{p} = \psi \left(S_{ij} - c(x) e_{ij}^{p} - \eta(x) \dot{e}_{ij}^{p} \right), \tag{1.8}$$

где ψ – положительный параметр.

Соотношения (1.1)-(1.8) определяют неоднородную упруговязкопластичекую среду с упрочнением.

Будем рассматривать процесс деформирования тела в квазистатической постановке.

Считаем, что параметры среды зависят случайным образом от пространственных координат, следовательно, поля напряжений, деформаций и перемещений также являются случайными функциями пространственных координат. Закон Гука перепишим в виде

$$e_{ij}^{e} = \frac{1}{2G} \left(\sigma_{ij} - \frac{3\nu}{1+\nu} \delta_{ij} \sigma \right), \tag{1.9}$$

здесь v - коэффициент Пуассона. Считаем <math>v = const. G = G(x) - модуль сдвига.

Параметры среды представим в виде [4]

$$G = \langle G \rangle f_1, \ c = \langle c \rangle f_2, \ k = \langle k \rangle f_3, \ \eta = \langle \eta \rangle f_4,$$
 (1.10)

где $f_i(i=1,2,3,4)$ — случайные статистически однородные изотропные функции, угловые скобки $\langle \ \rangle$ обозначают математическое ожидание.

Вид функции f_i зависит от свойств материала и вида нагружения. Предположим, что

$$f_i = \langle f_i \rangle + f_i' = 1 + f_i', \tag{1.11}$$

а также функции обозначенные штрихом равны, т.е.

$$f_1' = f_2' = f_3' = f_4' = f'.$$
 (1.12)

Рядом преобразований система уравнений (1.1)-(1.9) приводится к виду [1]

$$8f^{3}\langle G \rangle^{3}\langle k \rangle \dot{e}_{ij} - 4\langle G \rangle^{2}\langle k \rangle^{2} T_{ij} f^{2} =$$

$$= \left[I_{ij} - 2f \langle c \rangle \langle G \rangle e_{ij} - \langle \eta \rangle (2\langle G \rangle f \dot{e}_{ij} - T_{ij}) \right] \times$$

$$\times \left[I_{kg} - 2f \langle G \rangle \langle c \rangle e_{kg} - \langle \eta \rangle (2\langle G \rangle f \dot{e}_{kg} - T_{kg}) \right] \times \left[2f \langle G \rangle \dot{e}_{kg} - T_{kg} \right]$$
(1.13)

где

$$\begin{cases}
T_{ij} = \dot{\sigma}_{ij} - 3\gamma \dot{\sigma} \delta_{ij} \\
J_{ij} = (2\langle G \rangle + \langle c \rangle) \sigma_{ij} - (2\langle G \rangle + 3\gamma \langle c \rangle) \sigma \delta_{ij}
\end{cases}$$

$$\gamma = \frac{3\nu}{1 + \nu}$$
(1.14)

Проделывая выкладки аналогичные работе [1] придем к системе уравнений описывающих среднее напряженное и деформированное состояние рассматриваемой среды, которое в силу громоздкости здесь не приводим.

Будем исследовать устойчивость среднего состояния тела по отношению к малым возмущениям граничных условий.

Решение для осредненного состояния представим в виде

$$\langle \sigma_{ij} \rangle = \sigma_{ij}^0 + \sigma_{ij}^+; \ \langle e_{ij} \rangle = e_{ij}^0 + e_{ij}^+; \ \langle u_{ij} \rangle = u_{ij}^0 + u_{ij}^+,$$
 (1.15)

здесь параметры с ноликом определяют основное состояние, а с плюсом – возмещенное.

2. Рассмотрим задачу об устойчивости деформирования бесконечно длинной в направлении ox_3 пластинки из упруго-пластического стохастически неоднородного материала. Обозначим через S длину, H – толщину пластины рис. 1. Пусть пластинка сжимается вдоль оси x_1 усилиями p. Будем предполагать, что масштаб неоднородности мал по сравнению с характерным масштабом пластины, что позволяет использовать интегрирование в бесконечных пределах при нахождении уравнений для основного среднего состояния и соответствующей тензор Грина [4]

Потерю устойчивости пластинки исследуем в плоскости $x_1 o x_2$. Используем предположение теории малых докритических деформаций и углов поворота.

Докритическое, в среднем однородное, напряженное и деформированное состояние определяется соотношениями [1].

Puc. 1.

Уравнения равновесия для компонентов возмущения запишутся в виде

$$(a_{11} + a)\nabla^{2}u_{1}^{+} + (a_{12} + a)\frac{\partial^{2}u_{2}^{+}}{\partial x_{1}\partial x_{2}} - a\frac{\partial^{2}u_{1}^{+}}{\partial x_{1}^{2}} - a_{11}\frac{\partial^{2}u_{1}^{+}}{\partial x_{1}^{2}} = 0;$$

$$(a_{11} + a)\nabla^{2}u_{1}^{+} + (a_{12} + a)\frac{\partial}{\partial x_{2}}\left(\frac{\partial u_{1}^{+}}{\partial x_{1}} + \frac{\partial u_{2}^{+}}{\partial x_{2}}\right) - a\frac{\partial^{2}u_{1}^{+}}{\partial x_{1}^{2}} - a_{11}\frac{\partial^{2}u_{1}^{+}}{\partial x_{2}^{2}} - p\frac{\partial^{2}u_{1}^{+}}{\partial x_{1}^{2}} = 0.$$
(2.2)

Здесь ∇^2 – оператор Лапласа. Коэффициенты $a_{11},\ a_{12},\ a$ определяются выражениям

$$a_{11} = \frac{2\langle G\rangle(1-\nu)}{q} \left\{ \frac{\chi_{1}\langle k\rangle^{3}}{2} + 4\langle G\rangle^{2} p^{2} + D_{f} \left[\frac{\chi_{1}}{4\langle G\rangle\langle c\rangle} - \frac{p(1-\nu)}{4\langle G\rangle^{2}} \left(\frac{\langle k\rangle^{2}\langle c\rangle p}{2} + \frac{3p\langle c\rangle^{2}\langle k\rangle^{2}}{16\langle G\rangle} + \frac{\chi_{2}\langle c\rangle\langle k\rangle^{2}}{2} - \frac{\langle k\rangle^{2}\langle c\rangle}{2\sqrt{2}} \right) - 4(1-\nu)\langle G\rangle^{2} p^{2} + \frac{\langle c\rangle\langle k\rangle^{2}}{8} \times \left[\frac{\chi_{2}}{\langle c\rangle} - \frac{\nu p}{\langle G\rangle} \right] \left(2\sqrt{2}\langle k\rangle - \langle c\rangle \right) \right];$$

$$a_{12} = \frac{2\langle G\rangle\nu}{q} \left\{ 4\langle G\rangle^{2} p^{2} + \frac{\chi_{1}\langle k\rangle^{3}}{2} - D_{f} \left(\frac{\langle k\rangle^{2}\langle c\rangle}{8} \right) \left[\frac{\nu p}{\langle G\rangle} \right]^{2} + \left(\frac{\chi_{2}}{\langle G\rangle} \right)^{2} + \frac{p\chi_{2}}{\langle G\rangle\langle c\rangle} + \frac{p^{2}}{\langle G\rangle^{2}} \right] + 4\nu\langle G\rangle^{2} p^{2} \right\};$$

$$a = 2\langle G\rangle + 4\nu(1+3D_{f})$$

$$a_{11} = a_{22}; \ a_{21} = a_{12};$$

$$q = (1-2\nu) \left\{ 4\langle G\rangle^{2} p^{2} + \langle k^{4}\rangle + D_{f} \frac{\langle c\rangle^{2}\langle k\rangle^{2}}{2} \left(\frac{\chi_{2}}{\langle c\rangle} - \frac{P}{2\langle G\rangle} \right)^{2} \right\};$$

$$\chi_{1} = \sqrt{2}p - \langle k\rangle; \ \chi_{2} = \sqrt{2}\langle k\rangle - p.$$

 $D_f = \langle f'^2 \rangle$ — дисперсия неоднородности.

В возмущенном состоянии компоненты напряжений связаны с перемещениями формулами

$$\sigma_{11}^{+} = \frac{2}{H} \left(a_{11} \frac{\partial u_{1}^{+}}{\partial x_{1}} + a_{12} \frac{\partial u_{2}^{+}}{\partial x_{2}} \right)$$

$$\sigma_{22}^{+} = \frac{2}{H} \left(a_{11} \frac{\partial u_{2}^{+}}{\partial x_{2}} + a_{12} \frac{\partial u_{1}^{+}}{\partial x_{1}} \right)$$

$$\sigma_{11}^{+} = \frac{2a}{H} \left(\frac{\partial u_{1}^{+}}{\partial x_{2}} + \frac{\partial u_{2}^{+}}{\partial x_{1}} \right)$$
(2.3)

Уравнения (2.2) можно привести к системе с уравнений в амплитудных величинах перемещений [2, 3]

$$R_{ij}u_j^+ = 0$$
 $(i, j = 1, 2),$ (2.4)

где дифференциальные операторы имеют вид

$$R_{11} = \left(a_{11} \frac{\partial^{2}}{\partial x_{1}^{2}} + a \frac{\partial u_{2}^{+}}{\partial x_{2}} \right),$$

$$R_{22} = \left(a_{11} \frac{\partial u^{2}}{\partial x_{2}^{2}} + (a+p) \frac{\partial^{2}}{\partial x_{1}^{2}} \right),$$

$$R_{12} = R_{21} = (a_{12} + a) \frac{\partial^{2}}{\partial x_{1} \partial x_{2}}.$$
(2.5)

Решение (2.4) ищем в форме

$$u_{i}^{+} = -\left(a_{12}\frac{\partial^{2} F^{(j)}}{\partial x_{1} \partial x_{2}} + a\frac{\partial^{2} F}{\partial x_{1} \partial x_{2}}\right) \delta_{i1} + \left(a_{11}\frac{\partial^{2} F}{\partial x_{1}^{2}} + a\frac{\partial^{2} F}{\partial x_{2}^{2}}\right) \delta_{i2} \quad (i = 1, 2).$$
 (2.6)

Функции F определяются из условия нетривиального решения

$$(R_{11}R_{22} - R_{12}^2)F^{(j)} = 0.$$
 (2.7)

Подставив (2.4) в (2.7), получим

$$F^{(j)} \left\{ (a-p)a_{11} \frac{\partial^4}{\partial x_1} + \left[a_{11}^2 - a_{12}(a_{12} + 2a) - pa \right] \frac{\partial^4}{\partial x_1^2 \partial x_2^2} + a_{11}a \frac{\partial^2}{\partial x_2^4} \right\} = 0.$$
 (2.8)

Решение (2.8) запишем в следующем виде

$$F^{(j)} = \sum_{k=1}^{2} F_k; \quad F\left(\xi_k \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2}\right) = 0.$$
 (2.9)

Постоянные ξ_k имеют вид.

$$\xi_{1,2} = \frac{a_{11}^2 - a_{12}^2 - 2a_{12}a - pa}{2a_{11}a} \pm \sqrt{\left(\frac{a_{11}^2 - a_{12}^2 - 2a_{12}a - pa}{2a_{11}a}\right)^2 - a_{11}\frac{a - p}{a_{11}a}}.$$
 (2.10)

При исследовании устойчивости в случае одностороннего выпучивания решение уравнений (2.8), четное по x_2 , для F удобно искать в форме

$$F = \sum_{i=1}^{2} \left(c_1 c h \frac{nH}{S} \xi_1 x_2 \right) \sin \frac{\pi}{S} x_1$$

 C_i – произвольные постоянные.

Напряжения возмущенного состояния при цилиндрической форме потери устойчивости, определяются соотношениями

$$\sigma_{11}^{+} = a \left(a_{12} \frac{\partial^{2}}{\partial x_{2}^{2}} - a_{11} \frac{\partial^{2}}{\partial x_{1}^{2}} \right) \frac{\partial}{\partial x_{2}} F;$$

$$\sigma_{22}^{+} = a \left(a_{12} \frac{\partial^{2}}{\partial x_{2}^{2}} - \frac{a_{11}^{2} - a_{12}(a_{12} - a)}{A_{2}} \frac{\partial^{2}}{\partial x_{1}^{2}} \right) \frac{\partial}{\partial x_{2}} F;$$

$$\sigma_{12}^{+} = -a \left(a_{12} \frac{\partial^{2}}{\partial x_{2}^{2}} - a_{11}^{2} \frac{\partial^{2}}{\partial x_{1}^{2}} \right) \frac{\partial}{\partial x_{1}} F.$$
(2.11)

Граничные условия на свободной поверхности имеют вид

$$\sigma_{22|x_2=0,H}^+ = 0, \ \sigma_{12|x_2=0,H}^+ = 0,$$
 (2.12)

или, учитывая (2.11), будем иметь

$$\left(a\frac{\partial^{2}}{\partial x_{2}^{2}} - \frac{a_{11}^{2} - a_{12}(a_{12} - a)}{a}\frac{\partial^{2}}{\partial x_{1}^{2}}\right)\frac{\partial}{\partial x_{2}}F = 0;$$

$$\left(a\frac{\partial^{2}}{\partial x_{2}^{2}} - a_{12}\frac{\partial^{2}}{\partial x_{1}^{2}}\right)\frac{\partial}{\partial x_{1}}F = 0.$$
(2.13)

Из условия существования нетривиального решения [2] получаем для определения критических усилий трансцендентное уравнение в виде

$$\begin{split} \left(\xi_1^2 - \theta_1 \right) \left(\xi_2^2 + \frac{a_{11}}{a_{12}}\right) & \xi_1 s h \xi_2 \psi s h \psi \xi_2 - \left(\xi_2^2 - \theta_1\right) - \left(\xi_1^2 + \frac{a_{11}}{a_{12}}\right) \xi_1 s h \xi_2 \psi s h \psi \xi_1 = 0 \,, \quad (2.14) \end{split}$$
 где
$$0 = \frac{a_{11}^2 - a_{12}(a_{12} - a)}{a^2}; \quad \psi = \frac{\pi H}{2S} \,.$$

Для тонких полос, раскладывая гиперболические функции в степенной ряд до членов третьего порядка и подставляя полученное выражение в (2.14), находим:

$$\left(\xi_{1}^{2}\xi_{2}^{2} - \frac{a_{11}\theta_{1}}{a_{12}}\right)\left\{1 + \frac{\psi^{2}}{6}\left[\left(\xi_{1}^{2} + \xi_{2}^{2}\right) + \frac{\psi^{2}(\psi_{1}^{2} + \psi_{2}^{2}) + 4\xi_{1}^{2}\xi_{2}^{2}}{20}\right] - \theta_{1}\xi_{1}^{2}\xi_{2}^{2}\left(1 + \xi_{1}^{2}\xi_{2}^{2}\right) + \psi\left(\xi_{1}^{2} + \xi_{2}^{2}\right)\frac{\left(\xi_{1}^{2} + \xi_{2}^{2}\right) + 8\xi_{1}^{2}\xi_{2}^{2}}{20}\right]\right\} = 0.$$
(2.15)

Согласно соотношению (2.10) с учетом (2.15) получаем

$$\xi_1^2 + \xi_2^2 = \alpha_{11} - P; \ \xi_1^2 \xi_2^2 = 1 - \frac{a_{11}}{a} P.$$
 (2.16)

Подставив (2.16) в (2.15), получим кубическое уравнение относительно $-\frac{\sigma_{11}^0}{a_{11}} = \chi \,,$

$$\Delta_1 + \Delta_2 = 0, \tag{2.17}$$

где

$$\Delta_{1} = \begin{vmatrix}
1 - \frac{a_{11}}{a_{12}} \chi - \frac{a_{11}}{a} \theta_{1} & a_{11} \left(1 - \frac{a_{11} \chi}{a}\right) \\
\frac{\psi^{3}}{3} \left[1 + \frac{\psi}{10} (\theta_{1} - \chi)\right] & 1 + \frac{\psi^{2}}{6} \left\{ (\theta_{1} - \chi) + \frac{\psi^{2}}{20} \left[\theta_{1} (\theta_{1} - 2\chi) + \chi^{4} + 4 - 4 \frac{a_{11} \chi}{a}\right] \right\} \\
\Delta_{2} = \begin{vmatrix}
\frac{a_{11} \theta_{1}}{a_{12}} & 1 \\
1 - \frac{\chi}{\theta_{1}} + \frac{\psi^{2}}{6\theta_{1}} \left(\theta_{1}^{2} - 2\theta_{1}\chi + \chi^{2} + 2 - 2 \frac{a_{11}}{\theta_{1}} \chi\right) + \frac{\psi^{2}}{120\theta_{1}} (\theta_{1} - \chi) \left[\theta_{1} (\theta_{1} - 2\chi) + \chi^{4} + 8 \frac{a_{11} \chi}{a}\right] \right\} \\
+ \frac{\psi^{2}}{120\theta_{1}} (\theta_{1} - \chi) \left[\theta_{1} (\theta_{1} - 2\chi) + \chi^{4} + 8 \frac{a_{11} \chi}{a}\right] \right\}$$
(2.18)

Рассмотрим двухкомпозитный материал. В безразмерных величинах связь между критической нагрузкой $P_0 = p \langle G \rangle^{-1}$ и параметрами среды $c_0 = \langle c \rangle \langle G \rangle^{-1}$; $k_0 = \langle k \rangle \langle G \rangle^{-1}$ выразиться следующим соотношением

$$P_0 = \frac{\Psi^2}{9B_1} B_4 \left[1 - \frac{2\Psi}{15B_1 B_3} (B_4 - B_2 B_3) \right]; \tag{2.19}$$

здесь

$$B_{1} = \frac{k_{0}(\sqrt{2} + k_{0}) + D_{f}[k_{0} + (k_{0}\sqrt{2} - 1)] + 0.5}{k_{0}^{2} + D_{f}(k_{0}^{2} - k_{0}\sqrt{2} + 0.5) + 2};$$

$$B_{2} = \frac{k_{0}(\sqrt{2} - k_{0}) + D_{f}(k_{0}^{2} - k_{0}\sqrt{2} + 1)}{k_{0}^{2} + D_{f}(k_{0}^{2} - k_{0}^{2}\sqrt{2} + 0.5) + 2};$$

$$B_{3} = 2(1 + 3D_{f}); \quad B_{4} = 3(B_{1}^{2} - B_{2}^{2})$$

$$(2.20)$$

При выводе соотношений (2.19)-(2.20) для упрощения положим $c_0=1$ коэффициент Пуассона v=0,3. Для случайной неоднородной упруговязкопластической среды получение критической силы с привлечением гипотезы Кирхгофа-Лява определяется первым сомножителем уравнения (4.19), а ошибка при нахождении критической силы между точной теорией и прикладной теорией выражается формулой

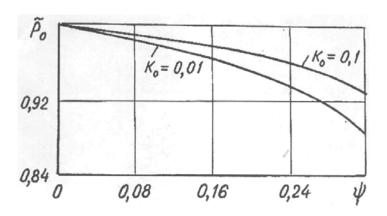
$$\frac{9P_0B_1 - \Psi^2B_4}{\Psi^2B_4} = -\frac{2\Psi^2}{15B_2B_3} (B_4 - B_2B_3). \tag{2.21}$$

Из (2.19) и (2.21) следует, что при исследовании устойчивости стохастически неоднородных пластинок из двухкомпонентного материала гипотеза Кирхгофа-Лява является асимптотически точной, т.е. значение критической нагрузки совпадает с первым членом разложения критической силы, вычисленной по точной теории. На

рис. 2.3 представлены зависимости между параметром ψ и величиной P_0 , где

$$\tilde{P}_0 = 1 - \frac{2\psi^2}{15B_2B_3} (B_4 - B_2B_3). \tag{2.22}$$

Кривые соответствуют значениям, приведенным в таблице 1. На рис. 2 кривые соответствуют однородному напряженному и деформированному состоянию пластинки для разных коэффициентов пластичности. Величина критической силы в случае однородного состояния $D_f = 0$ слабо меняется при изменении геометрических размеров пластинки и при увеличении коэффициента пластичности предельные напряжения становятся больше рис. 2.



 $Puc.\ 2.\ \Pi$ редставлена зависимость между параметром ψ и величиной \widetilde{P}_0 . Кривые соответствуют значениям приведенным в таблице 1. Кривые получены для однородного напряженного состояния, когда дисперсия неоднородности равна нулю $D_f=0$.

Таблица 1.

№ рис.	Ψ	K_0	P_0	P_0^*	D_f
1	0,08	0,1	0,9853	0,9823	0
	0,16	0,1	0,9906	0,9756	0
	0,24	0,1	0,9600	0,9571	0
	0,32	0,1	0,9436	0,9199	0
	0,08	0,01	0,9800	0,9791	0
	0,16	0,01	0,9611	0,9552	0
	0,24	0,01	0,9363	0,9134	0
	0,32	0,01	0,8705	0,8500	0
2	0,08	0,1	0,9844	0,9814	0,2
	0,15	0,1	0,9008	0,8905	0,2
	0,24	0,1	0,8103	0,8000	0,2
	0,32	0,1	0,7250	0,6760	0,2
	0,08	0,01	0,9780	0,9721	0,2
	0,16	0,01	0,9610	0,8501	0,2
	0,24	0,01	0,7470	0,7243	0,2
	0,32	0,01	0,6108	0,5500	0,2

Из рис. 3. следует, что учет неоднородности материала идет к снижению критических напряжений.



Рис. 3. Кривые зависимости критической силы от геометрических размеров пластины ψ . Кривые получены для неоднородного напряженного и деформированного состояния, когда $D_f = 0,2$. Показа-

но, так же влияние пластичности на значение критической силы.

Выводы

Полученные выражения для критической силы показывает, что при исследовании устойчивости стохастические неоднородных упруговязкопластических тел гипотеза Кирхгофа-Лява является асимптотически точной. Установлено, что на величину критической силы влияют геометрические размеры полоски, средние параметры свойств материала и неоднородность.

ЛИТЕРАТУРА:

- 1. Спорыхин А.Н., Чигарев Ю.В. Об устойчивости деформирования стохастически неоднородной упрочняющейся упруговязкопластической среды. Прикл. механика, т. 13, № 3, 1977. с. 24-32.
- 2. Гузь А.Н. Устойчивость трехмерных деформируемых тел. Изд-во «Наукова думка», 1971. с. 275.
- 3. Ивлев Д.Д. Механика пластических сред. Москва «Физматлит», 2001, с. 445.