МЕХАНИЧЕСКИЕ ПАРАМЕТРЫ ШИРОКОПОЛОСНЫХ УЛЬТРАЗВУКОВЫХ МИКРО-НАНОАКТЮАТОРОВ

Сунка В.Я., Колешко Л.А.

New class of wide band ultrasonic micro – nanoactuators with increased stability of parameters was offered by authors. Output mechanical parameters are shown as results of computer simulation and experimental explorations.

В настоящее время на фоне интенсивного развития микроэлектроники, заметно некоторое отставание в создании исполнительных элементов мехатронных систем. В частности, задача создания высокоточных и миниатюрных актюаторов линейного и ограниченного углового перемещения весьма актуальна. Не менее значима актуальность и в разработке высокоточных, безредукторных приводов. В наибольшей мере указанным требованиям могут удовлетворять пьезоэлектрические исполнительные элементы (ПЭИЭ). Сюда можно отнести пьезоактюаторы (ПА) и пьезомоторы (ПМ). ПЭИЭ имеют уникальную совокупность положительных свойств: малые размеры, высокая разрешающая способность, широкий диапазон рабочих частот, значительные выходные усилия, отсутствие внешнего электромагнитного поля, широкий температурный диапазон, достаточная надежность. ПА имеют простую конструкцию и работают на основе обратного пьезоэффекта. Необходимое перемещение достигается за счет деформации пьезоэлемента при подаче на него электрического напряжения. Конструктивно пьезоэлементы выполняются в выде отдельных пластин или составного блока: секционного монолитного, склеенного составного и составного упругоподжатого пьезопреобразователя. ПА обеспечивает перемещения до десятков и сотен микрометров с нанометрической точностью.

Основной недостаток существующих ультразвуковых актюаторов заключается в существенном изменении выходных параметров (усилие, амплитуда и скорость перемещения) вследствие изменения резонансной частоты узкополосной механической ультразвуковой колебательной системы (УЗКС) при переменном воздействии различных дестабилизирующих факторов (температуры, усилия прижима, шероховатости контактирующих материалов, старения и т.д.). Повысить стабильность выходных параметров ультразвуковых актюаторов возможно методом расширения полосы пропускания их амплитудно-частотной характеристики (АЧХ) [1.2] выходных механических параметров.

Данный метод реализуется с помощью электрических пассивных и активных цепей, включаемых между выходом генератора и входом УЗКС и образующих с ней систему электромеханически связанных контуров (ЭМСК).

В статье исследованы параметры широкополосных микроактюаторов в зависимости от параметров входных электрических цепей и конструктивнотехнологических параметров исходной узкополосной УЗКС. Основу широкополосного ультразвукового микроактюатора (рис. 1) составляют: узкополосная УЗКС, включающая излучающую пьезоэлектрическую 1 и отражающую 2 пластины, волновод 3; компенсирующая индуктивность L_{κ} 4 с ее активным сопротивлением R_{6} ; корректирующая емкость C_{κ} 5 и источник питания E_{Γ} 6. В качестве излучателя использовалась пьезокеримика ЦТС-19 диаметром 5 мм и толщиной 1 мм со статической емкостью $C_{3} = 1000\pm25$ пФ при величине пьезомодуля $d_{33} = 3.3\cdot10^{-10}$ Кл/Н. В качестве волновода могут использоваться формы образующей: однородный цилиндрический или прямоугольный стержень одинакового сечения по его длине; цилиндрические формы коническая (при коэффициенте усиления амплитуды колебаний на

излучающем торце N=2,25 и 4,58), экспоненциальная (N=5; 10 и 15) и катеноидальная (N=5; 10 и 15) (рис. 1). В зависимости от формы волновода используют пьезокерамическую пластину прямоугольной или дисковой формы. В настоящей статье рассматриваются волноводы только конической, экспоненциальной и катеноидальной формы с указанной величиной коэффициента N. Исходная узкополосная УЗКС имела резонансную частоту продольных колебаний $f_{\rm p} \sim f_2 \sim 420$ кГц. Величина механической нагрузки $Z_{\rm H}$ на торец волновода 3 (рис. 1) изменялась от нулевого до максимального значения $1000~{\rm H\cdot c/m}$. Величина механического параметра S (амплитуды перемещения, скорости колебаний) на торце волновода определялась через коэффициент электромеханического преобразования $K_{\rm 3p}$ по выражению S= $K_{\rm 3p} \cdot U_{\rm H}$, где $U_{\rm H}$ — электрическое напряжение возбуждения пьезопреобразователя УЗКС. Расчет величины $K_{\rm 3p}$ производился с помощью ЭВМ с использованием полной шестиполюсной эквивалентной схемы замещения реальной исходной УЗКС и параметров присоединенных реактивных $L_{\rm K}$, $C_{\rm K}$ и активных $R_{\rm 5}$ цепей регулирования полосы пропускания. Величина коэффициента $K_{\rm 3p}$ определялась по выражению

$$K_{\rm pp} = A_{11} Z_{\rm H} + A_{12}, \tag{1}$$

где A_{11} , A_{12} — коэффициенты полной обобщенной матрицы шестиполюсной эквивалентной схемы замещения УЗКС [3].

Величина электрической добротности Q_3 , подключаемой компенсирующей индуктивности L_{κ} , изменялась при расчетах от 10 до 500, т. е. охватывала все возможные значения добротностей реальных электрических пассивных и активных фильтров.

Типичные АЧХ механического параметра (величины $K_{\rm 3p}$) приведены на рис. 2. Зависимость 1, соответствует АЧХ исходной узкополосной УЗКС, а зависимость 2, получена при значении подключенной индуктивности

$$L_{\kappa} = L_{\kappa 0} = (4 \cdot \pi^2 \cdot C_{9} \cdot f_{p}^{2})^{-1}$$
 (2)

и является существенно неравномерной в широкой полосе частот $f_{\rm n} = f_3 - f_1$ при коэффициенте электромеханической связи $K_{\rm c} \ge 0.05$ [3].

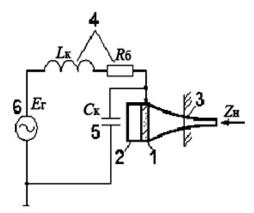


Рис.1. Широкополосные микроактюаторы МЭМС

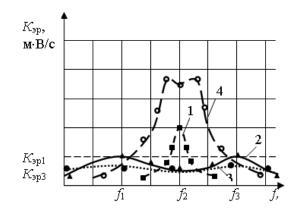


Рис. 2. АЧХ коэффициента электромеханического преобразования исходной (1) и широкополосных УЗКС (2-4) микроактюаторов МЭМС

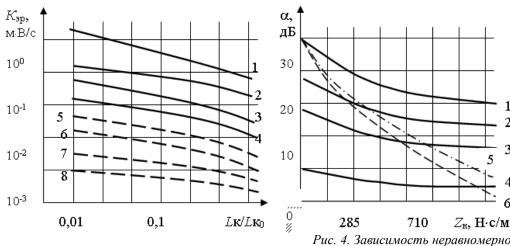
Зависимости коэффициента K_{3p} на частотах связи f_1 и f_3 от величины подключенной индуктивности L_{κ} и механической нагрузки Z_{H} для УЗКС с катеноидальным волноводом (N=5) приведены на рис. 3. Независимо от формы волновода общие закономерности таких зависимостей следующие. С ростом полосы пропускания (увеличение значения L_{κ}) величина коэффициента K_{3p} уменьшается. Увеличение механической нагрузки Z_{H} и уменьшение электрической добротности Q_{3} также снижает значение K_{3p} (рис. 3). Между величиной ширины полосы пропускания $f_{\Pi} = f_{3} - f_{1}$ и величиной коэффициента K_{3p} существует практически линейная зависимость,

чем шире полоса тем меньше значение коэффициента $K_{\text{эр}}$. Увеличение добротности $Q_{\text{э}}$ с 10 до 500 при узкой полосе пропускания приводит к росту коэффициента $K_{\text{эр}}$ в 30-40 раз, а при широкой полосе пропускания $f_{\text{п}}$ =40-50 кГц ($L_{\text{ко}}$ = 0,15 мГн) коэффициент $K_{\text{эр}}$ увеличивается в 20-30 раз (зависимость 1-4).

Характерно, что зависимость коэффициента $K_{\rm 3p}$ от механической нагрузки $Z_{\rm H}$ в сильной степени определяется формой волновода и величиной его коэффициента усиления N. Чем больше значение N, тем больше и изменение коэффициента $K_{\rm 3p}$. Среди трех форм неоднородных волноводов наиболее устойчивы при изменении механической нагрузки $Z_{\rm H}$ широкополосные ультразвуковые микроактюаторы с коническим волноводом. Для тех же значений N, $Z_{\rm H}$ и $Q_{\rm 9}$ в широкополосной УЗКС с экспоненциальным или катеноидальным волноводом изменение величины коэффициента $K_{\rm 3p}$ в 1,5-2 раза больше, чем при использовании конического волновода. Это обстоятельство необходимо учитывать при проектировании и эксплуатации ПА и не стремиться к высоким значения коэффициента N (реально величина N должна находиться в пределах N=2-5.

Чрезвычайно важной особенностью широкополосных УЗКС на системе ЭМСК является то, что чем шире полоса пропускания тем стабильнее механические колебания при воздействиях механической нагрузки на торец волновода и дестабилизирующих различных факторов эксплуатации (зависимости 5-8, рис. 3). В целом при полосе $f_{\Pi} = 40-50$ кГц ($L_{\text{ко}} = 0,15$ мГн) стабильность механических параметров в 15-20 раз выше, чем в исходной узкополосной УЗКС ($f_{\Pi} = 1,0-1,5$ кГц ($L_{\kappa}=0$ мГн)). Для всех широкополосных УЗКС с различными волноводами чем меньше величина электрической добротности Q_{3} , тем выше стабильность механических колебаний. Однако при этом уменьшается энергетический к.п.д.

С ростом ширины полосы пропускания (увеличение L_{κ}) АЧХ механических параметров (амплитуды перемещения, скорости и коэффициента K_{3p}) приобретает Мобразный (двухгорбый) характер с минимумом указанных значений на частоте связи f_2 (зависимости 2,3, рис. 2). Основным параметром таких АЧХ является неравномерность выходных параметров в полосе пропускания, определяемая как, например, отношение величин коэффициента K_{3p1} или K_{3p3} на частотах связи f_1 или f_3 к коэффициенту K_{3p2} на частоте связи f_2


$$A = 20 \cdot \lg (K_{9p1} / K_{9p2}) = 20 \cdot \lg (K_{9p3} / K_{9p2}).$$
 (3)

Проведенный анализ неравномерности α АЧХ механических выходных параметров рассматриваемого круга широкополосных УЗКС микроактю позволяет сделать следующие выводы. Неравномерность АЧХ повышается с увеличением ширины полосы пропускания и увеличением добротности электрического контура, с одновременным уменьшением спектральной эффективности преобразования электрической энергии в механическую в заданной полосе частот.

Для УЗКС с Q_3 =10-30 при полосе f_{Π} =15 – 30 кГц величина $\alpha \sim 0$ так, как в данном случае получают АЧХ механических колебаний с одним экстремумом (максимумом) на частоте связи f_2 . Многочисленные эксперименты показали, что для качественной работы ПА необходимо в полосе используемых частот иметь величину неравномерности $\alpha \leq 3$ -5 дБ. При использовании УЗКС с различной формой волновода величина α слабо зависит от коэффициента N в режиме холостого хода ($Z_{\rm H} \sim 0$). Если же на торец волновода воздействует нагрузка ($Z_{\rm H} \neq 0$), то характер зависимости $\alpha = \varepsilon(f)$ определяется формой образующей волновода. Наибольшая равномерность АЧХ присуща УЗКС с коническим волноводом. Так, при увеличении механической нагрузки $Z_{\rm H}$ до 1000 H·c/м неравномерность изменяется на (15-20) %, что в 2,5-5 раз меньше чем в УЗКС с экспоненциальным или катеноидальным волноводом (зависимость 1,5,6, рис. 4). При увеличении механической нагрузки изменение неравнисимость 1,5,6, рис. 4). При увеличении механической нагрузки изменение неравнисимость 1,5,6, рис. 4).

номерности α происходит за счет уменьшения коэффициента связи $K_{\rm эp}$ на частотах f_1 и f_3 .

При $Z_{\rm H}$ = 1000 H·c/м для УЗКС с добротностью $Q_{\rm B} \ge 250$ величина α уменьшается на ~50% (зависимость 1,2, рис.4), а при $Q_9 \le 100$ величина α уменьшается до 25 % (зависимость 3,4, рис.4). В УЗКС с коническим волноводом зависимость неравномерности АЧХ при воздействии нагрузки Z_н очень слаба (5 – 10 %) и несколько повышается при увеличении коэффициента N. Зависимость $\alpha = \varepsilon (N, Z_H)$ очень сильно выражена для УЗКС с экспоненциальным и катеноидальным волноводами (зависимость 5,6 рис. 4). Для УЗКС с последними волноводами при нагрузке $Z_{\rm H} \ge 300$ H·c/м форма АЧХ механических колебаний изменяется столь сильно, что превращается с двугорбой в одногорбую, причем чем больше величина N, тем при меньшей величине нагрузки Z_н двугорбая широкополосная АЧХ приобретает форму одногорбой АЧХ.

 $Puc. 3. 3 ависимость величины <math>K_{эр}$ широкополосной УЗКС с катеноидальным волноводом от величины индуктивности $L_{\kappa}1,5;2,6;3,7;4,8-Q_{9}=500,100,50 \text{ u } 10; 1-4-Z_{H}$ $=0, 5-8 - Z_H = 1000 \text{ H} \cdot \text{c/M}$

Рис. 4. Зависимость неравномерности АЧХ механической скорости широкополосных ПА с экспоненциальным волновводом от величины $Z_{\rm H}$. 1.5.6; $2.3.4 - Q_9 = 500,100,50 \text{ u } 10$; 1-4-N=5; 5-N=10 u 6-N=15

1

3

5

Из приведенного выше анализа для широкополосных УЗКС пьезоэлектрических микроактюаторов можно предложить следующие методы коррекции (повышения) равномерности АЧХ выходных механических параметров в полосе пропускания.

1. Введение в цепь первого электрического контура системы ЭМСК последовательно с индуктивностью $L_{\rm K}$ активного сопротивления $R_{\rm 0}$, определяемого по выражению

$$R_{6} = (2 \cdot \pi \cdot L_{\kappa 0} \cdot f_{2}) / (f_{2} / f_{\Pi}). \tag{4}$$

При использовании данного метода полоса пропускания f_n остается неизменной, а равномерность повышается при увеличении сопротивления $R_{\rm 6}$ за счет одновременного уменьшения величины K_{3p} только на частотах связи f_1 и f_3 при постоянной его величине на частоте f_2 . Недостаток данного метода — низкий к.п.д. из-за потерь электрической мощности на активном сопротивлении $R_{\rm 0}$ сравнимом с сопротивлением излучения УЗКС. Кроме того, амплитуда механических колебаний широкополосной УЗКС меньше, чем в исходной узкополосной без дополнительного подключения компенсирующей индуктивности $L_{\rm K} = L_{\rm KO}$.

2. Суть данного метода регулирования равномерности АЧХ выходных параметров состоит в дополнительном введении параллельно пьезопреобразователю

УЗКС корректирующей емкости C_{κ} (рис. 1), величину которой выбирают по выражению

$$C_{K} = (1/(4 \cdot \pi^{2} \cdot C_{2} \cdot f_{p}^{2})^{-1} - C_{2}$$
 (5)

 $C_{\rm \tiny K} = (1/(4\cdot\pi^2\cdot C_{\rm \tiny 3}\cdot f_{\rm \tiny p}^{\ 2})^{\text{-1}} - C_{\rm \tiny 9}. \tag{5}$ При противоположных изменениях величин $C_{\rm \tiny K}$ и $L_{\rm \tiny K}$ возможно регулировать форму АЧХ выходных механических параметров за счет корректировки коэффициента электромеханической связи K_c . В этом случае, с уменьшением величины компенсирующей индуктивности L_{κ} и увеличением корректирующей емкости C_{κ} полоса пропускания уменьшается при одновременном увеличении значения коэффициента $K_{\text{эр}}$ (зависимость 4, рис. 2). При малых значениях компенсирующей индуктивности $L_{\rm K} \leq (0.05-0.25) \; L_{\rm KO} \;$ величины выходных механических параметров существенно увеличиваются по сравнению с аналогичными параметрами узкополосной исходной УЗКС. Например, при $Q_3 \sim 30-50$ теоретически и экспериментально получено увеличение механических параметров в 3-4 раза, при этом и полоса пропускания f_{Π} также увеличилась в 3-4 раза. Равномерность АЧХ в полосе пропускания таких широкополосных УЗКС микроактю атров легко регулируется и находится в пределах $\alpha \le 0.5-2$ дБ. Увеличение выходных механических параметров при одновременном и расширении полосы пропускания обусловлено следующими обстоятельствами. В системе ЭМСК УЗКС образуется резонанс электрических напряжений, а значит на параллельно соединенных C_{κ} и $C_{\mathfrak{I}}$ (т.е на электродах пьезокерамического преобразователя) электрическое напряжение увеличивается в несколько раз по сравнению с напряжением источника питания $E_{\rm r}$ (генератора). Безусловно спектральная мощность, потребляемая широкополосным ПА от источника, равномерна в заданном частотном диапазоне.

3. Третий метод регулирования равномерности в полосе пропускания обусловлен изменением величины пьезомодуля пьзокерамического преобразователя, т. е. изменяем величину коэффициента электромеханической связи $K_{\rm c}$ механического и электрического контуров системы ЭМСК. Собственно, изменение величины d_{ik} приводит к адекватному изменению эквивалентной механической емкости $C_{\rm M}$ пьезопреобразователя. Уменьшение величины пьезомодуля d_{33} от $3.3 \cdot 10^{-10}$ до $0.47 \cdot 10^{-10}$ Кл/Н ведет почти к линейному уменьшению полосы пропускания f_{Π} (рис. 5,6) системы ЭМСК микоактюатора и соответственно к уменьшению величины неравномерности α (рис.5,в). Величина коэффициента электромеханического преобразования $K_{\rm эр}$ с уменьшением пьезомодуля увеличивается на 10-50 % и тем больше, чем уже исходная полоса пропускания УЗКС (рис. 5,а). Этот неожиданный результат (ибо хорошо известно, что величина механических выходных параметров пьезопреобразователей прямо пропорциональна величине пьезомодуля d_{ik}) можно объяснить следующим образом. Действительно, уменьшение пьезомодуля ведет к соответствующему уменьшению механических выходных параметров. С другой стороны, уменьшение пьезомодуля d_{33} ведет к сужению полосы пропускания (рис. 5,б), а значит к повышению значения коэффициента K_{3p} на частотах связи f_1 и f_3 . Второе условие является доминирующим, вследствие чего величина механических параметров и увеличивается частотах связи f_1 и f_3 при уменьшении пьезомодуля d_{33} и приемлемой (заданной) величине неравномерности α . Большее изменение величины коэффициента $K_{\mathfrak{P}}$ при уменьшении пьезомодуля d_{33} имеет место при узкой полосе пропускания $f_{\Pi} \le$ 1,5 кГц (рис. 5,а, зависимость 1,2).

Приведенные на рис. 2-5 графики позволяют в зависимости от конкретного технологического процесса использования микропьезоактю атора оптимально сконструировать их УЗКС, выбрать необходимую величину компенсирующих и корректирующих элементов L_{κ} , R_{δ} , C_{κ} и величину пьезомодуля $d_{i\kappa}$ с целью получения широкополосной АЧХ выходных ме-ханических параметров. Из сравнения рассмотренных трех методов регулирования неравно-мерности АЧХ выходных механических параметров широкополосных микроактюаторов для создания микроперемещений изделий второй метод (одновременное противоположное изменение величин реактивных элементов L_{κ} и C_{κ}) со всех точек зрения является безусловно самым предпочтительным. В некоторых практических случаях применения широкополосных пьезокерамических микроактюаторов возможно и комбинированное использование трех методов, но с возможно меньшей величиной активного резистора R_{δ} для второго метода.

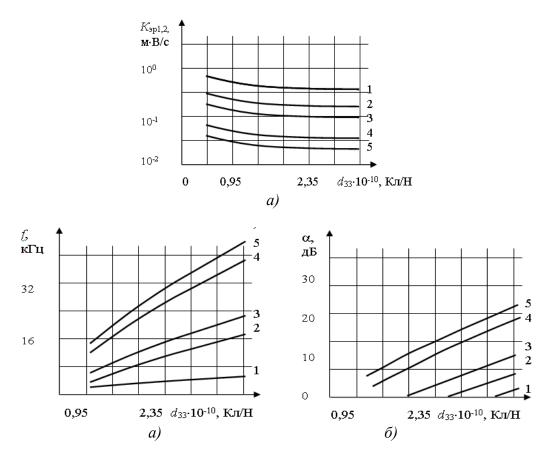


Рис. 5. Зависимость коэффициента $K_{\text{эр}}$ (а), ширины полосы пропускания f_n (б) и неравномерности α (в) от величины пьезомодуля d_{33} для широкополосной УЗКС с коническим волноводом (N=4.58) при $Z_n=0,\ Q_3=50\ u\ 1;2;3;4;5-\ L_\kappa/L_{\kappa o}=0,01;0,05;0,1;0,5\ u\ 1,0$

При этом ширина полосы пропускания $f_{\rm II}$ ультразвуковых микроактюаторов должна, по крайней мере, в 3-4 раза превышать возможный уход резонансной частоты исходной узкополосной УЗКС при воздействии дестабилизирующих факторах их эксплуатации. В этих условиях использование широкополосных микроактюаторов будет весьма плодотворным.

ЛИТЕРАТУРА

- 1. Исследование электронных схем расширения полосы частот ультразвуковых систем/ В.М. Колешко, В.Я. Сунка // Известия АН БССР, сер. ФМН-1980. №1. С.89-95.
- 2. В.М. Колешко, В.Я. Сунка. Авт. свид. СССР №№ 721285, 725846, 763004, 793662.
- 3. Домаркас, В.И., Кажис, Р.-И.Ю. Контрольно-измерительные пьезоэлектрические преобразователи. Вильнюс: Минтис, 1975. 255 с.