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Abstract— For the low-speed magnetic fluid seals, the influence of the meridional flow, induced by the shaft
rotation, on the distribution of magnetic particles concentration, is studied. Influence of the thermomagnetic
convection on the structure of this flow and on the temperature distribution in high-speed magnetic fluid seals
is investigated also. The problems were examined by numerical methods. It is discovered that even very slow
rotation of the shaft homogenises distribution of the magnetic particles concentration in the seal and thereby
enlarges its operation life. For high-speed seals thermomagnetic convection provides the penetration of the
fluid flow in the region of the narrow gap and levels off the temperature distribution decreasing its maximum
value and thereby enlarges its operation life too. It is found also that the influence of thermomagnetic con-

vection grows with the viscosity increasing.
DOI: 10.1134/S1063784211120103

INTRODUCTION

Magnetic fluid seals (MFS) practically of any
design are simplified to the sketch presented on Fig. 1.
The rotating shaft, which is made from magnetocon-
ducting material (usually steel), is surrounded by a
magnetic system which concentrates the magnetic flux
in the narrow gap where the magnetic field strength
achieved maximum value (up to H,,, ~ 1.5 x 10° A/m).
Situated in this gap the O-ring volume of magnetic
fluid plays the role of sealing media.

In static, when shaft rotation is absent, pressure
burst Ap for MFS is defined by the expression [1]:

Ap = “’O[(MH)max_(MH)s]’ (1)

where M is magnetic fluid magnetization, H is strength
of magnetic fields, index “max” corresponds to the
values in the most narrow part of the MFS gap and
index “s”—to the values at the free surface of mag-
netic fluid.

The magnetic fluid is a colloid solution of magnetic
nanoparticles in carrier fluid (average diameter about
10 nm). In the gravity field this solution is stable due to
the smallness of particles, sedimentation of the parti-
cles in the gravity field is compensated by Brownian
motion, and the magnetic fluid remains stable for 10
years. But in the gap of the MFS gradient of the mag-
netic field so large that effective free fall acceleration is
more than acceleration of gravity by 10000 times, i.c.,
equal to 10000 g. In this situation magnetic particles
could not be stabilized by Brownian motion and their

! The article was translated by the authors.

concentration in the gap grows. It leads, on the one
hand, to the magnetic fluid magnetization growing
and, accordingly, to the growing burst pressure in time
[2]. On the other hand, this process leads to disinte-
gration of magnetic fluid as a system and could lead to
failure of MFS. Shaft rotation could essentially influ-
ence the equilibrium concentration distribution of
magnetic nanoparticles in the magnetic fluid volume,
and these influences depend on the flow pattern in the
volume.

S=

Fig. 1. Scheme of MFS. /—permanent magnet, 2—mag-
netic circuit, 3—sealed shaft, and 4—magnetic fluid.
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Fig. 2. Problem geometry.

One more aspect of MFS operation which is
closely related with the flow in magnetic fluid volume
appears at high-speed shaft rotation. As there is heat
generation in the magnetic fluid volume due to the vis-
cous friction, the fluid is heated up. Due to the heat
removal in the pole of the magnetic system fluid tem-
perature could be stabilized but the character of its dis-
tribution in the magnetic fluid volume and maximum
value of steady-state temperature will be governed not
only by the equations of heat balance but by flow pat-
tern too.

Thus, for analysis of MFS characteristics it is prin-
cipally important to take into account a meridional
flow in the volume of magnetic fluid.

1. GOVERNING EQUATIONS

As the flow in the MFS is axisymmetrical, the well-
known Navier—Stokes equation in the cylindrical
coordinate system has the form
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and equation of continuity has the form
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For simulation of the MFS gap we will use the geo-
metrical model proposed in [3]. Within the frame of
this model we assume that the pole of the magnetic
system, which keeps the magnetic fluid, has the shape
of a hyperbole with apex angle 23, minimal distance
between the pole and the shaft surface is a, and the
magnetic fluid free surface shape is fixed and coincides
with a isoline of the value of magnetic field strength
(Fig. 2).

As for a MFS, typical sizes are: for gap width a ~
0.2 mm, for shaft radius R ~ 20—50 mm, then, the
relation R > a is certainly fulfilled. As all derivatives in
rand z have an order 1/a, and the derivative in an angle
¢ is equal to zero for axisymmetrical flow, and value of
rin the Egs. (2)—(5) has an order R, then this equation
system could be essentially simplified. Equations (2),
(4), and (5) become

2 2
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and for Eq. (3) it is necessary to consider it in more
details. Let us use dimensionless velocity and coordi-
nates and choose as a scales linear velocity of the rotat-
ing shaft surface V, shaft radius R, and width of the gap
a as a representative value for distance when deriva-
tives are calculated. As azimuthal flow v,, induced by
the shaft rotation acts as a source in Eq. (6), then from

its left side follows next relationship

a
s Vi~ kv(p.

\
Then, Eq. (3) for dimensionless components of veloc-
ity could be written in the form

Ref( 8v z@v) _ v, 59 v, 59 ©)
Tor or o7

where Re = Va/v is analogous of the Reynolds num-

ber. It is supposed below that the relationship

Re./Ja/R << 1isfulfilled and Eq. (9) could be written as

2 2
(@m@@=0
or’ 07"

Thus, for further analysis of the magnetic fluid flow
in MFS Egs. (6)—(8) and (10) are used. It is necessary
to notice that Eq. (10) gives an opportunity to find the
distribution of azimuthal velocity v,, separately from
radial and axial components. The last ones are con-
nected with azimuthal velocity only through the last
term in the left side of Eq. (6). So, it is possible to use

(10)

TECHNICAL PHYSICS Wl. 56 No. 12 2011



INFLUENCE OF THE MERIDIONAL FLOW AND THERMOMAGNETIC CONVECTION

the azimuthal velocity found from Eq. (10) for deter-
mination of the meridional flow from Egs. (6)—(8).
Due to Eq. (8) it is possible use a stream function y so
that v, = —0y/0z, v, = Oy/0r. Let us use a vortex func-
tion ® = curlv for meridional components of velocity
and, after differentiation of Eq. (6) in zand Eq. (7) in r,
we will receive dimensionless equation for y and ®
2
Iqung:&héh&@gun
0z Oor Or 0z o772 orf R oz

where the velocity of a shaft surface V, gap width a,
and magnetic fluid viscosity v are used as scales.

2. INFLUENCE OF SHAFT ROTATION
ON THE DISTRIBUTION
OF THE CONCENTRATION OF MAGNETIC
NANOPARTICLES IN MFS AND STABILITY
OF MFS CHARACTERISTICS

Under the action of nonuniform magnetic field the
magnetic nanoparticles are moving to the area of max-
imum field, i.e., in the narrowest part of the gap. Con-
centration of particles would grow in this area infi-
nitely, if not for limiting factors. First of all, it is the
diffusion of particles caused by their thermal move-
ment. Under action of the diffusion process particles
move in an opposite direction, i.e., from the area with
the increased concentration. As the magnetic field is
axisymmetrical, transmitting movement of particles
lays in the plane »—z. Shaft rotation causes azimuthal
movement of the fluid, i.e., directed normal to trans-
mitting movement of particles and, for the first sight,
should not influence on their movement in a meridi-
onal plane, i.e., on the steady state concentration of
particles and, as consequence, on burst pressure of
MES (as the magnetization of the fluid from expres-
sion (1), depends on concentration of particles).
However, it could be seen from Eq. (11), the solution
y =0, ® = 0 is possible only in the case

2

% = 0,

0z
i.e., the fluid flow could be strictly azimuthal only in
an infinite cylindrical gap. If the gap has finite length
along a shaft or its border is not parallel to the shaft
surface, the condition (12) is not fulfilled and there is
a secondary current in the plane r—z. It is obvious, that
such current will distribute particles in the volume of a
magnetic fluid more homogeneous, i.e., and burst
pressure of MFS will change less in time.

For the geometry presented in Fig. 3 it is possible to
use coordinates of elliptic cylinder

12)

= h
x = ccosmncosh&, (13)
¥y = csinmnsinhg,

where ¢ = a/cosf, 0 <& <o, 0 <1 < 2n. Coordinate x
is defined so that » = R + x and directed normal to the
2011
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Shaft surface
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Fig. 3. Calculation domain.

MFS shaft surface and coordinate y = z directed along
the shaft surface.

As for steady state distribution of nanoparticle con-
centration under the pole of the MFES is essentially
important magnetic field distribution, we will find the
solution of Maxwell’s equations in the presented
geometry.

We will consider the magnetic permeability of a
shaft and an extremely large pole (i = o). As the mag-
netic field in the gap of the magnetic fluid seal is very
high (H > 10° A/m) and considerably more than a
magnetization of magnetic fluid (M ~ 5 x 10* A/m),
magnetic permeability of a magnetic fluid could be
considered equal to permeability of vacuum (i = ).
It means the magnetic field in a volume of the mag-
netic fluid is described by the equations

divB = divuH = p,divH = 0, curlH = 0. (14)

Itis possible to enter function ¥ such that H, = 0%¥/0y,
H,=—0¥/0x. Then, the equation divH = 0 is satisfied
automatically, and the equation curlH = 0 is reduced
to Laplace’s equation

AY = 0. (15)
Solution of Eq. (15) in the coordinate system of the
elliptic cylinder has a simple form

E:
A sinth_, + sinzn
If the whole magnetic flux @ induced by a perma-
nent magnet runs through the pole with the thickness 26
and concentrated in a magnetic fluid volume which is

limited by coordinate line &, than the magnetic field is
given by the expression

H = (16)
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Fig. 4. Typical flow pattern. y = 10, B = 45°, Re = 1, and
R = 100.

H = (®/28)ycosP ’ (17)
E sinthJ + sinzn
where y = §/a.

Equations of motion in the coordinate system (13)
become

v, v _
—+t—| =0, (18)
og  om
2
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Once again we will emphasize that the zero solu-
tion of Eq. (20) ® = 0, y = 0 is possible only when
0v,/dy =0, i.e., only in an infinite gap between cylin-
ders. If the shape of the drop of magnetic fluid differs
from cylindrical, then ® # 0, y # 0. It means that after
shaft rotation besides the azimuthally oriented flow
v,, the meridional oriented flow v,, vy exists in a drop

fg magnetic fluid. As such a flow lies in the plane of the
concentration gradient (c = ¢(x, y)), shaft rotation will
influence the distribution of magnetic particles in the
volume of magnetic fluid.

The problem of magnetic fluid flow was solved
numerically by the finite difference method in the
coordinate system of the elliptic cylinder. No-slip
conditions were used at solid surfaces: v, = 0 at the
surface of a pole, v, = 1 at the shaft surface, v, = 0,
v,= 0. Condition of shear stresses equal to zero
Ov/on = 0 is used at free surface § = &, and at the plane
of symmetry & = 0. The typical flow pattern is pre-
sented in Fig. 4.

For Brownian particles with concentration ¢ and
density p the law of mass conservation has a form

KRAKOV, NIKIFOROV

pg—:+divi =0, 1)

where i is the density of mass flux which is equal to
i = —pDVc+pcbf+pv. (22)

In this expression, D is diffusion coefficient, b =
D/kT, visvelocity of fluid flow, and fis the force acting
on the particles by magnetic field. For a spherical par-
ticle b = 1/6mmR, where R is a particle radius, 7 is a
dynamic viscosity of fluid, f = pymV H, m is a particle
magnetic moment, m = (4/3)ntR>M,, and M, is magne-
tization of a particle material.

Substitution of expression (22) in Eq. (21) gives an
equation for distribution of particle concentration in
moving fluid

%’ = DAc —l%uomVHVc
(23)
— %pochH—va
or in dimensionless form
g‘; Ac—UVHVe—UcAH—ReScvVe,  (24)

where U = pyymHy/kT, H, = ©/25, Re = Va/v is the
Reynolds number, Sc = v/D is the Schmidt number,
and as the scales the next values are used: a?>/D for
time, V (velocity of shaft surface) for fluid velocity,
a for distances, and H, for magnetic field.

In coordinates of elliptic cylinder, Eq. (24) has the
Oc _ cos’ B

form
[ (8c 8H)
Ot sinh’ g+ sin’ n 08\ g

+ (2 _pe a”) ReSc (@Eg‘l’—@f@‘l’ﬂ.
oniom 0gon onog

Solution of Eq. (25) was found numerically by the
finite difference method. The condition of equality to
zero of mass flux at all boundaries of magnetic fluid
volume was used as boundary conditions.

As a typical meaning, the next values were used:
kinematic viscosity of fluid v = 1.4 x 10~ m?/s, den-
sity p = 1100 kg/m3, particles diameter d = 10~ m
and temperature 7= 300 K. Then, the diffusion coef-
ficient is D = kT/3nvpd = 2 x 107! m?/s and the
Schmidt number is equal to Sc = 5 x 10°. All variants
of simulation were done for the values Sc = 5 x 10°,
U=0.2;0.5;1.0; Re =0-2.

Modification of the particle concentration profile
in magnetic fluid is presented in Fig. 5. It could be
seen that the concentration is maximal near the point
& =0, n = B (apex of the pole). Also it could be seen
that in time particles are distributed in volume more
homogeneously.

When concentration of magnetic particles in the
volume of the magnetic fluid is not constant, the burst
pressure of MFS is not described by Eq. (1) but

(25)
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defined by pressure difference at the narrowest part of
a gap of MFS and at the free surface of magnetic fluid
drop

Ap = Pmax —Ps»

which must be calculated taking into account variable
concentration. Maximum pressure could be found as
pmax = (“OMH)max = (IJ'OMICH)max = HOMI(CH)maX’ Ml iS
magnetization of particles, c is particle concentration
from Eq. (21), and H is the strength of the magnetic
field from Eq. (17). Accordingly, p, = poM(cH),. It
means the burst pressure of the MFS is defined by
expression

Ap = HOMI[(CH)max - (CH).Y]‘

Maximal and minimal values of isolines cH which
cross the volume of magnetic fluid from shaft to pole
were found from numerical solutions of Egs. (17)
and (21). Their difference in accordance with (26) was
considered as burst pressure of MFS. Figure 6 shows
how the value p changes in time for different meanings
of parameter U and Reynolds number Re.

(26)

Figure 6 shows that for all values of parameter U
burst pressure Ap increases in time and achieves some
maximal value which is larger as value Uincreases, i.e.,
magnetic moment of particles. It means that magnetic
fluids with large particles are less stable in MFS. It is
necessary to pay special attention to the fact that the
maximal value of Ap depends on the Reynolds num-
ber: value (Ap)..x decreases with increasing of Re.
Thus, shaft rotation, which induces secondary merid-
ional flow, agitates the fluid and approximates distri-
bution of particles in the volume of magnetic fluid to
homogeneous. Correspondingly, value Ap is approxi-
mated to initial value Apy, = pyM(H,.x — H,), where
c= Co.

Figure 7 shows that for Re ~ 2 Ap/Ap, = 1. It means
that in MFS with gap width a = 2 x 10~* m, fluid vis-
cosity v = 1.4 x 1073 m?/s even for shaft velocity V'~
0.1 m/s (i.e., Re = 1.5), and the meridional flow
homogenizes particle distribution in the volume of
magnetic fluid. As a result, burst pressure of MFS is
practically constant in time.

Thus, computer simulation shows that shaft rota-
tion induces secondary circulation flow in the meridi-
onal plane which leads to more homogeneous distri-
bution of magnetic particles in the volume of magnetic
fluid in MFS. Intensity of the secondary flow is pro-
portional to velocity of shaft rotation. If, in the case on
nonmovable shaft, particles concentration in the gap
increases in time enlarging finally two—three times,
then shaft rotation essentially decreases this enlarging.
Even for a shaft rotation about 0.1 m/s nanoparticles
concentration in the volume of fluid remains homoge-
neous and constant in time. It means that even low
shaft rotation essentially stabilizes the operating char-
acteristics of MFS.
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(@) (b) ()

Fig. 5. Isolines of concentration ¢. # = (a) 1, (b) 3, (¢c) 5;
curve [—c=1.3;curve 2—c=1;Re=1,y=10, R=100,
and 3 = 45°.

(@) (b)

Fig. 6. Dependence of burst pressure of MFS on time. In fig-
ures (a, ¢): Re = (/) 0; (2) 0.65; and (3) 1; (b): Re = (1) 0;
(2)0.5;and (3) 1.

Fig. 7. Dependence of burst pressure of MFS on speed of
shaft rotation. y = 10, R = 100, and 3 = 45°.

3. TEMPERATURE DISTRIBUTION
IN WORKING VOLUME OF MFS

Similar to circulatory flow influences on distribu-
tion of magnetic particles concentration, it is neces-
sary to expect temperature homogenization in high-
speed MFS where magnetic fluid is heated due to vis-
cous friction. This influence was investigated earlier in
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[4]. However, in addition to circulatory flow in such
kind of MFS one more factor may be essential—nat-
ural thermomagnetic convection. At first sight from
the usual scales of phenomenon it seems that natural
convection is always weaker then induced flow, i.e., it
seems improbable that in high-speed MFS where shaft
velocity attains 10 m/s natural thermomagnetic con-
vection could be essential for the drop of magnetic
fluid with cross-section size no more than 5 mm.
However, it is necessary to take into account that mag-
netic forces in the working volume of MFS are very
large. To draw an analogy with gravity forces, then,
effective free-fall acceleration in the volume of mag-
netic fluid attains g.; = peMVH/p ~ (1.28 x 107¢) x
(4 x 10% x (10%/2 x 10=4)/103 ~ 10° m/s?> ~ 10000 g.

Thus, thermomagnetic convection in MFS orig-
inated under the influence of the force which is
10000 times more than a gravitational one, so, its
intensity could be 10000 times more than intensity of
gravitational thermal convection in analogous condi-
tions too. These reasons say that at simulation of a
thermal mode of high-speed MFS it is impossible to
neglect that natural thermomagnetic convection as
differences of temperatures in the volume of a mag-
netic liquid in such MFS are rather great.

As the vector of magnetic field gradient lies in the
meridional plane, components of thermomagnetic
buoyancy force are added only in equations for radial
and axial components of velocity (6) and (7). In
Boussinesq’s approximation these equations have the
form

o @7)
+v[_"f+_") WoOM 7 1:)0H
or o7 poT or

ov,

ov,
V_ Z

s 9V _10p
" or ‘0z

poz
(28)
+v(a2VZ+62VJ BoOM 1 _ ) OH
or o7 poT 0z

In the process of standard transition to the variable
stream function—vortex these equations become a sys-
tem of equations
2 2
Re(awaw 5\1/5\11) —00,00

0z Or Or 07 o7 or
29)
Re@V GI‘ (
+ —= Vx(MTV
R az Re[ x( H)]
Ay = -0,

where Gr,, = pB,AT,HyMsa*/p,v* is the magnetic
Grashof number. Here, we assume that OM/0T~ M, [1].
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The heat transfer equation in the meridional plane
has the form (taking into account that v,, v, < v,,):

2 2
%;THVT KAT+ _{(av) +@Y£)

or 0z
(30)
_10v, ﬁp}
Ror g*(

where the last term is a heat source due to a viscous
friction.

In dimensionless form, Eq. (30) could be rewritten
as

2
PeVVT = AT+ PrERez[(% - Z‘-P) (av ) J,(31)
or r 0z
where Pr = v/x is the Prandtl number, Re = Va/v is the
Reynolds number, Pe = RePr is the Pecklet number,
E = v¥/c,Tya?, Gr,, = poB,AToHyMsa?/pyv?, and val-
ues Vy, =1 m/s, AT, = 1 K, and H, (maximal value of
magnetic field strength under the pole of MFS) are
used below as the scales.

As it could be seen from Eq. (27), there are two
sources of meridional flow: first, vf[, /R is caused by a

shaft rotation and is proportional to ¥?/R and the rea-
son for the second one is thermomagnetic convection
and it is proportional to pyMB,H,AT/pya. In the usual
situation, the second term is much lower than the first,
but in high-speed MFS there is a very high magnetic
field gradient together with an extremely large temper-
ature gradient and the situation could be opposite. For
example, for V=10 m/s and R = 5 cm the first term is
about 2 x 10° m/s?. For typical MFS values of Mg~ 4 x
10°A/m, Hy~10°A/m, B, ~ 107 1/K, py ~ 10° kg/m?,
and ¢ = 0.2 mm the second term is about AT (2.5 x
10%) m/K s2. It is clear even for temperature differ-
ences in the volume of magnetic fluid more than 10 K,
the influence of thermomagnetic convection becomes
comparable with influence of a shaft rotation. As in
high-speed MFS the overheating under the pole could
achieve 100 K and more, the importance of taking into
account free thermomagnetic convection in this vol-
ume is evident.

As is known, the intensity of thermomagnetic con-
vection is proportional to a temperature difference AT.
The last one is defined by the equation of heat transfer
(30) in which the source of heat is viscous friction. So,
for temperature difference, it means the intensity of
thermomagnetic convection too, is proportional to the
viscosity v. It is a very unusual situation for natural
convection which is usually weaker for fluids with high
viscosity. As is seen in high-speed MFS the influence
of the convection must be more essential for more vis-
cous fluids.

Boundary conditions for the stream function and
vortex are found from boundary conditions for veloc-
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ity: no-slip conditions at solid borders n = 3, n = ©/2,
condition of symmetry at symmetry plane & = 0, and
condition of zero friction 0v/0E = 0 at free surface & = E,.

Boundary conditions for a temperature were cho-
sen from the following considerations. As the steady-
state temperature distribution is studied, a heat flux to
the rotating shaft after its warming up becomes infini-
tesimal and could be neglected. So, three boundaries
1N = n/2 (ashaft), £ = 0 (plane of symmetry), and & = &
(free surface) are considered as heat-isolated: 07/on =0,
where 7 is a direction normal to the surface.

Also we consider that all dissipative heat is drawn
off by a pole cooling system with the cooling fluid with
temperature T, = 0. Then, heat transfer condition at
the pole surface will have the form

0T _
)

n

o(T—-T,) or —Xa—T = aT,

on
where vector n is directed into the pole and o is a heat
transfer coefficient. In dimensionless form this condi-

tion could be written as

— = -BiT,

on
where Bi = aa/A is the Biot number. It is well known
that the value of the Biot number of about 20 is typical
for heat transfer between metal wall and fluid flow.
Namely this value was used during numerical simula-
tion.

Equations (29) and (31) were solved numerically by
the method of finite difference in the calculation
domain presented above (Fig. 3) in coordinates of the
elliptic cylinder (13). While constructing a finite-dif-
ference scheme a control volume method was used
with a linear interpolation function for the stream
function and exponential Patankar interpolation func-
tion for the temperature and vortex (this function
takes into account value and direction of flow velocity
in the control volume) [5].

Typical values of the magnetic fluid’s physical
properties and MFS working volume dimensions were
used in the analysis: gap width a = 2 x 10~ m, apex angle
for pole B = 45°, fluid density p, = 1.2 x 103 kg/m?, heat
conductivity A = 0.2 W/(m K), heat capacity ¢, = 1.7 x
103 J/(kg K), heat diffusivity was equal tox = A/ PoCp =
0.2/(1.2 x 10°* x 1.7 x 10%) = 10~7 m?/s, coefficient of
thermal expansion 3 = 10~ K~!, and magnetization sat-

uration of magnetic fluid Ms =4 x 10* A/m. Shaft sur-

face velocity V (i.e., Reynolds number, Re) was varied
during the analysis in such a manner that the overheat-
ing was no more than 200 K. The value of the Biot
number of 20 was used during the simulation.

The range of viscosities of real magnetic fluids in
MFSs is from 3.0 x 10~ up to 1.5 x 1073 m?/s. In this
diapason, the Peclet number was ranged from 180000
for minimal viscosity to 13 000 for a maximal one. All
calculations were fulfilled using a mesh with 251 x 151
nodes with test calculations on a refined grid for veri-
No. 12
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Fig. 8. Stationary flow pattern in meridional plane of
MFS. Pr = 5100, E = 3.68 x 1073, v = 5 x 10~* m?/s,
Re =5 (V=12.5m/s), and Gr,, = 0.

fication of accuracy of numerical simulation. Since for
large Peclet numbers the accuracy of the numerical
model was not enough, computations were limited by
minimal viscosities equal to 2 x 10~* m?/s.

Figures 8 and 9 represent typical patterns of merid-
ional flow in MFS without free convection (Gr,, = 0)
and with free thermomagnetic convection (Gr,, =
0.0134) in the model. These figures show that the flow
patterns differ only in the region of the pole apex. The
flow modified by thermomagnetic convection (which
is especially intensive in the region of high gradients of
magnetic field and temperature, i.e., namely in the
region of the pole apex, penetrates in the narrowest
part of the gap. This means convective heat transfer
after this penetration has to be enhanced essentially
providing more homogeneous temperature distribu-
tion in the volume of magnetic fluid.

Figure 10 shows temperature distribution along the
shaft surface for fluid viscosity v =2 x 10~ m?/s. Sim-
ulation without taking into account (curve /) demon-
strates that a shaft temperature in the plane of symme-
try is very high (194 K more than the temperature of
the cooling system). Account of the thermomagnetic
convection (curve 2) lowers essentially maximal tem-
perature under the pole apex (137 K more than the
cooling system temperature).


https://www.researchgate.net/publication/285170247_Numerical_Heat_Transfer_and_Fluid_Flow_Hemisphere_Publishing_Corp?el=1_x_8&enrichId=rgreq-14ab8f2f-ff07-4a4c-a59f-1bfc7be18652&enrichSource=Y292ZXJQYWdlOzI1Nzg1NjE0NTtBUzozMjkwNTYyMTUxNTg3ODRAMTQ1NTQ2NDUyMzgwNQ==

1752

0 2 4 6 8 10 12 14

Fig. 9. Stationary flow pattern in meridional plane of
MES. Pr = 5100, E = 3.68 x 10_3 v=>5x 10_4m/s
Re =5 (V=12.5m/s), and Gr,, = 0.0134.
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Fig. 11. Temperature distribution in magnetic fluid vol-
ume. Pr=2040, E=5.88x 1074 v=2x 10" *m?/s, V=
30 m/s, and Grm =0.0838.

More over, Fig. 11 shows that the temperature dis-
tribution in the magnetic fluid drop volume is almost
uniform due to convective flow.

KRAKOV, NIKIFOROV
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Fig. 10. Dependence of overheating of a shaft (K) on dis-
tance from plane of symmetry. Pr = 2040, E = 5.88 x 10_4
v=2x 10" 4m/s and V' = 30 m/s. Curve 1—Gr,, = 0,
curve 2—0.0838.
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Fig. 12. Dependence of shaft surface temperature on dlS—
tance from plane of symmetry. Pr = 15300, E = 3.31 x 10_
v=15x10"m?%/s, V=6.38 m/s, dashedlme—Gr —0
and solid line—Gr,, = 0.00149.

As is evident from Fig. 12, the influence of thermo-
magnetic convection on the temperature distribution
in high-speed MFS is even more essential for more
viscous fluid (for example, the highest temperature of
the shaft decreases from 209 to 109 K).

In summary we will notice, that usual intensity of a
heatsink due to forced convection increases with
growth of fluid flow velocity and, finally sooner or
later, becomes more than heatsink due to natural con-
vection which does not depend on outer flow velocity.
As in MFS the fluid warming up is determined by vis-
cous dissipation, the overheating of a magnetic fluid
grows also with growth of speed of the shaft rotation,
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Fig. 13. Dependence of magnetic fluid overheating under
the pole apex on a shaft speed rotation. Pr= 2040, E = 5.88 x

1074, v=2x10"* m?/s, and ¥, ,, = 30 m/s.

i.e., and with growth of meridional flow velocity. This,
in turn, leads to an intensification of thermomagnetic
convection. Thus, in MFS the situation with thermo-
magnetic convection becomes twice unique: its influ-
ence increases both with growth of viscosity of a mag-
netic liquid, and with growth of speed of rotation of a
shaft. It is shown evidently by the curves presented in
Figs. 13, 14.

CONCLUSIONS

Numerical simulation of a meridional flow in the
volume of magnetic fluid discovered its the essential
influence on characteristics of both static seals and
high-speed MFS. In the first case, it is found that even
very slow rotation of a shaft leads to homogeneous dis-
tribution of magnetic nanoparticles in the volume of
magnetic fluid. It means such rotation prevents strati-
fication of magnetic fluid in MFS and thereby essen-
tially increases the operating life of a seal. Also it is dis-
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Fig. 14. Dependence of magnetic fluid overheating under
the pole apex on a shaft speed rotation. Pr = 15300, E =

331x 1072, v=1.5x 1073 m?%/s, and V= 6.38 m/s.

covered in high-speed MFS that it is essential to take
into account a thermomagnetic convection which, as
became clear, leads to intensive flow directly in the
narrowest part of a gap under a pole decreasing the
fluid temperature in this area. As is clear from this sim-
ulation an operation of MFS is possible for larger
speeds as it was considered earlier.
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