литейное производство

УДК 669.714

А.Г. СЛУЦКИЙ, канд. техн. наук, В.А. ШЕЙНЕРТ, В.А. СМЕТКИН, канд. пед. наук, А.А. АНДРУШЕВИЧ, канд. техн. наук, И.Л. КУЛИНИЧ (БНТУ)

ОСОБЕННОСТИ МОДИФИЦИРОВАНИЯ СЕРОГО ЧУГУНА УЛЬТРАДИСПЕРСНЫМИ СОЕДИНЕНИЯМИ АКТИВНЫХ ЭЛЕМЕНТОВ

В настоящее время для модифицирования структуры металлов и их сплавов находят все большее применение наноматериалы в виде соединений активных элементов (нитриды, карбиды, оксиды, карбонитриды и др.). Главным преимуществом таких модификаторов является большое количество частиц, приходящихся на единицу объема расплава, что в значительной степени определяет эффективность измельчения кристаллической структуры обрабатываемого сплава, и как следствие, значительное повышение прочностных и эксплуатационных свойств отливок. Анализируя литературные источники по данному вопросу, необходимо отметить уже достигнутые успехи в практике наномодифицирования литейных сплавов [1, 2].

Интересные результаты получены в работе [1] по модифицированию чугуна СЧ 25 ультрадисперсными порошками оксидов тугоплавких металлов и криолита. Установлено, что после введения такого модификатора характер распределения пластинчатого графита приобретает вид колоний дендритного направленного строения с размером пластинчатого графита в 2 раза меньше по сравнению с немодифицированным образцом. При этом увеличивается дисперсность перлита с 0,57 до 0,32 мкм и повышается предел прочности на 90 МПа при сохранении твердости чугуна равной 207 HB \pm 5 %.

Ранее проведенные исследования показали перспективность применения ультрадисперсных порошков нитрида титана в составах

брикетированных модификаторов-раскислителей на основе алюминия при выплавке углеродистой стали [2].

Установлено, что для достижения максимального эффекта применения наночастиц актуальным является вопрос эффективного их ввода в составы модификаторов. Один из таких способов ввода, предусматривающий предварительное смешивание компонентов, их брикетирование и последующую экструзию в прутки диаметром 3-5 мм, был реализован нами в лабораторных условиях [3]. Анализ результатов проведенных исследований показал, что в экструдированных образцах модификатора на основе олова распределение нанопорошка оксида иттрия в матрице гораздо более равномерное по сравнению с аналогичными материалами, полученными методами сплавления и прессования порошковых смесей [4]. Следовательно, следует ожидать более эффективного влияния таких наночастиц на формирование микроструктуры в литейных сплавах. Строение металлической основы чугуна связано с эвтектоидным превращением и обусловливается преимущественно временем и длиной пути диффузии атомов углерода при распаде аустенита. Известно, что аустенит распадается несколько ниже температуры эвтектоидного превращения и при неблагоприятном сочетании различных факторов процесс может происходить с образованием перлитной металлической основы включений пластинчатого графита. Этому процессу способствует наличие в чугуне таких металлов как медь, никель и олово.

Целью настоящей работы являлось исследование особенностей структурообразования в чугуне с пластинчатым графитом при использовании модификатора на основе олова с добавками наночастиц оксида иттрия.

Плавка чугуна осуществлялась в индукционной тигельной печи ИСТ-006. В качестве основных шихтовых материалов использовали рафинированный доменный передельный чугун, стальной лом. После расплавления и перегрева чугуна в индукционной печи до температуры 1450 С производился выпуск плавки и разливка по литейным формам. Модификатор в виде прутка диаметром 5 мм. (рисунок 1), полученный методом экструзии, вводился в ковш под струю жидкого чугуна в количестве 0,15 %.

Рисунок 1— Общий вид модификатора на основе олова с добавками наночастиц оксида иттрия

Для исследования химического состава, структуры, технологических и механических свойств немодифицированного и модифицированного чугуна отливались необходимые образцы.

Отбор проб и подготовку шлифов для исследования структуры немодифицированных и модифицированных образцов серого чугуна осуществляли по ГОСТ 3443-87. Измерения твердости проводили по методу Бринелля при нагрузке 30 000 Н на твердомере ТШ-2М. Склонность чугуна к отбелу изучали на специальных клиновых пробах, отлитых в стержневую форму. Обобщенные результаты представлены в таблице 1.

Исходный сплав содержал 3,49 % углерода, 1,86 % кремния, незначительное количество марганца. Качество полученного серого чугуна оценивали по морфологическим характеристикам и распределению пластинчатого графита, фазовому составу матричной основы, дисперсности пластин перлита. Установлено, что металлическая основа исходного сплава состояла в основном из перлита и незначительного количества феррита (8 %), структура графита — пластинчатая завихренная (ПГф2), с длиной включений не более 45 мкм. В модифицированном чугуне металлическая основа состояла из перлита более высокой дисперсности (рисунок 2).

При сравнительном анализе микроструктуры образцов в первую очередь заметны изменения в характере распределения и размере пластинчатого графита (рисунок 3). Модифицирование чугуна позволило уменьшить размер графитной фазы до 25 мкм.

Таблица 1 – Сравнительные результаты исследований химического состава, структуры, твердости и технологических свойств чугунов

				Кол-во ПГ				III 4, 6	9ШЦ
Микроструктура		Графит		Размер ПГд			-	ІП д45	ПГд25
				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	III p1, 3	3,6 1,9 0,14 6,5 229 203 191 187 11100 0 IIII ф2 IIII III III III III III III II
				-dоф	ма	Шφ	-	111 ф2	ПГф2
		Металл. основа		Фер- рит			ŀ	9Ф	0
		Мет		Пер- лит				1192	П100
В		KZ		45			,	162	187
Твердость, НВ		а стен	ОГЛИВКИ, ММ	5 15 25 45			j J	173	191
вердо	Голщина стенки		оплив	15			(196	203
${ m L}$	ΣL			5			l	20.7	229
Отбел,							(0,8	6,5
Состав чугуна			Sn			3,49 1,86 0,03 8,0 207 196 173 162 II92 Ф6 IIIФ2 IIIPp1, 3 IIII A45 IIIF4, 6		0,14	
			Si			1,86		1,9	
			C			,	3,49	3,6	

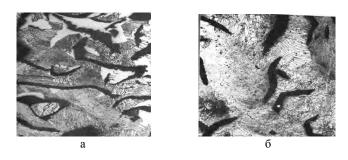


Рисунок 2 – Структура металлической основы исходного (a) и модифицированного (б) чугуна, ×500

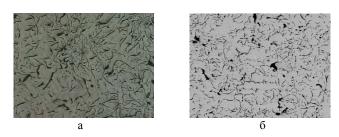


Рисунок 3 — Структура графита в исходном (a) и модифицированном (б) чугуне, ×100

Измерение дисперсности перлита в чугунах проводили согласно ГОСТ 8233-56. Установлено, что дисперсность пластин перлита в немодифицированном чугуне составила 0,57 мкм, а после введения модификатора она увеличилась до 0,32 мкм (рисунок 4).

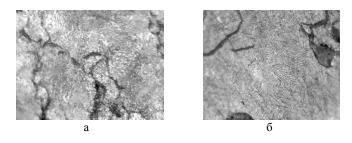


Рисунок 4 — Дисперсность перлита в исходном (a) и модифицированном (б) чугуне

Твердость базового чугуна в образцах составила 167–207 НВ в зависимости от толщины стенки. Модифицирование сплава позволило за счет воздействия в первую очередь олова повысить твердость до 187–229 НВ. Следует также отметить, что склонность модифицированного чугуна к отбелу снизилась незначительно (с 8,0 до 6,5 мм). Это в первую очередь связано с наличием в составе модификатора перлитизирующего элемента олова.

Таким образом, модифицирование серого чугуна присадкой на основе олова, содержащей оксид иттрия, позволяет изменить характер распределения и размеры пластинчатого графита, повысить однородность металлической основы сплава, повысить дисперсность перлита и улучшить его механические и технологические свойства.

Результаты исследований дают основание рекомендовать данный модификатор для внепечной обработки серого чугуна с целью повышения качественных характеристик отливок.

Литература

- **1.** Влияние модифицирования ультрадисперсными порошками оксидов тугоплавких металлов и криолита на структуру, механические свойства и разрушение чугуна СЧ25 / А.П. Зыкова [и др.] // Известия вузов. Черная металлургия. 2014. Т. 57, № 11 С. 37—42.
- **2. Пути повышения** эффективности модификаторов раскислителей / А.Г. Слуцкий [и др.] // Металлургия: Республ. межведом. сб. науч. тр.: в 2 ч. Минск: БНТУ, 2013. Вып. 34, ч. 1. С. 62–71.
- **3.** Перспективы использования наноразмерных порошков для получения модифицирующих лигатур / А.Г. Слуцкий [и др.] // Литье и металлургия. -2015. -№ 1. -C.115–-118.
- **4. Перспективы использования** нанодисперстных порошков соединений активных элементов при получении литейных сплавов / А.Г. Слуцкий [и др.] // Металлургия: Республ. межведом. сб. науч. тр. Минск: БНТУ, 2014. Вып. 35. С. 74–82.