Определение кренов вентиляционных и дымовых труб

Позняк А.С., Войшнарович К.В. Белорусский национальный технический университет

Кафедрой «Инженерная геодезия» БНТУ выполнялись наблюдения деформаций дымовых и вентиляционных труб на различных химических предприятиях. Как правило, для определения величин и направлений кренов (изгибов) использовался способ периодических измерений горизонтальных и вертикальных углов с двух пунктов. Недостатком этого способа является то, что направления кренов на разных высотных горизонтах приходилось определять графически из построений частных и соответствии с принятыми масштабами. направлений аналитического определения кренов предложено использовать проекции частных кренов на оси прямоугольных геодезических координат, что позволило разработать и отладить компьютерную программу вычислений величин и направлений изгибов труб. Исходными данными для расчета являются: количество труб и наблюдаемых высотных горизонтов, дирекционные углы (а1 и а2) и горизонтальные расстояния (d1 и d2) с каждого пункта (п1 и п2) до нижних центров труб, углы наклона на каждый горизонт и частные крены в угловой мере (сек), полученные геодезическими методами. Результаты вычислений представляются в виде таблицы и графиков, в которых для каждого высотного горизонта указываются направление (а) и величина полного (результирующего) крена (К).

Фрагмент таблицы величин и направлений изгибов труб (распечатка):

Nº LODN-	Угол наклона		Частн	ый крен	Высота	Полный крен					
зонта	п1,гр.	п2,гр.	п1,сек	п2,сек	Н, м	К, мм	а,гр.				
Труба 1, a1 = 145°, d1 = 166 м, a2 = 227°, d2 = 200 м											
1	14	14	0	0	47	0	0				
2	22	18	55	0	68	45	227				
3	27	23	135	9	86	105	230				
4	33	28	213	46	109	150	237				
Труб	a 2, a	L = 129	°, d1 =	84 м, а	$a2 = 178^{\circ},$	d2 = 57	7 м				
1	4	5	0	0	7	0	0				
2	24	33	39	153	40	45	288				
3	38	40	-31	132	50	60	321				

Данные подобных таблиц и графики характеризуют пространственное положение вентиляционных и дымовых труб, подверженных влиянию

химически агрессивной среды и других факторов, и могут быть использованы в работе строителями и работниками технического надзора за инженерными сооружениями.

УДК 528.08

Тригонометрическое нивелирование короткими лучами – анализ погрешностей.

Киричок О.И., Пожелаева К.А. Белорусский национальный технический университет

Тригонометрическое нивелирование короткими лучами заключается в определении превышения по измеренному углу наклона и расстоянию между точками, при этом расстояние между прибором и рейкой должно быть небольшое (не более 25 м).

По формуле для нахождения погрешности определения превышения тригонометрическим нивелированием

$$m_h^2 = (m_d t g v)^2 + \left(\frac{d}{\rho cos^2 v} m_v\right)^2 + m_i^2 + m_{ij}^2$$

где m_h — погрешность определения превышения; m_d — погрешность определения горизонтального проложения; m_v — погрешность определения угла наклона; m_i — погрешность определения высоты прибора; m_u — погрешность высоты визирной цели, вычислены погрешности определения превышения тригонометрическим нивелированием и сведены в таблицу.

d, M	5	10	100	5	10	100	5	5	5
v '	10	20	70	10	10	10	10	20	10
m _d , мм	50	100	1000	50	100	1000	50	50	10
m _v ''	10	10	10	10	10	10	10	10	10
m _h ² , мм	0,10	0,40	23,52	0,06	0,24	23,50	0,06	0,06	0,06
m _h , мм	0,32	0,63	21,38	0,24	0,48	6,85	0,32	0,40	0,25

По данным таблицы видно, что при малых расстояниях от прибора до рейки средняя квадратическая погрешность определения превышения меньше миллиметра при малых углах наклона, причем погрешности измерения расстояний — 1/100. Это значит, что высокоточные измерения расстояний возможны с применением тригонометрического нивелирования, однако методика таких измерений требует разработки.