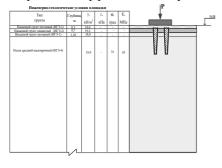
Результаты расчетов модуля основности (гидросиликатный модуль), Мо, силикатного (кремнеземистого) модуля, коэффициента качества К, показали, что золы, полученные при сжигании торфа: на Усяжском торфобрикетном заводе (ТБЗ), относится к скрыто активным золошлаковым материалам и требует интенсификации твердения; на Лидском ТБЗ — относится к активным золошлаковым материалам и не требует интенсификации твердения;

Результаты испытаний физических свойств представлены в таблице

тезультаты непытании физилееких своисть представлены в таслице										
NN пп.	Физические свойства		ели зол и шлака енных предприят							
		зола Усяж- ского ТБЗ	зола Лидского ТБЗ	шлак Лидского ТБЗ						
1	2	3	4	5						
1	Средняя плотность, κ_{Γ}/M^3	2201	2246	2183						
2	Насыпная плотность, $\kappa \Gamma/M^3$	731	728	742						
3	Удельная поверхность, см ² /г	3157	3209	3164						

УДК 624.13


Опыт армирования основания плитных фундаментов на объектах Беларуси

Бойко И.Л. Белорусский национальный технический университет

На ряде строящихся объектов со сложными грунтовыми условиями в Республики Беларусь проводятся исследования работы натурных плитных фундаментов на армированном основании. Влияние горизонтального армирования грунтовых подушек бетонными решетками изучалось при строительстве новых цехов «Алюминтехно». С этой целью в активной зоне под подошвами плитных фундаментов закладывались грунтовые марки. Фиксация их деформаций в процессе нагружения натурных фундаментов позволила оценить размеры активной зоны под подошвами плитных фундаментов и уточнить методы расчета таких фундаментов.

Вертикальное армирование грунтов цилиндрическими и коническими бетонными и сваями из цементно-песчаного раствора изучалось в процессе строительства цеха по производству упаковки в Шабанах, торгового центра у станции метро «Могилевская» и на объекте «Расширение производственной базы по выпуску алюминиевого профиля

по ул. Селицкого» в г. Минске. Проведены испытания натурных фундаментов на основании, армированном вертикальными элементами, подтвердившие эффективность принятых конструктивных решений.

Инженерно-геологиче	екше усл	овия па	ощадки			. 1"
Tien	Глубина		c,	φ.	E,	1 ₩
грунта	м	xH/m ³	кПа	град	МПа	
Армированный грунт	1.00	18,9	-	-	-	
Насынной грунт (ИГЭ-1) Суглинок пыловатый прочный	1.20	18,9	Ŀ	<u> </u>	-	
(MF3-3)	2.30	20,9	38	25	14	
Песок ередний средней прочности (ИГЭ-13)	2.90	17,8	2	37	25	
Суглинок пыленатый средней прочности (ИГЭ-2)	3.70	20,3	29	23	7	
Торф, сильнозаторфованный грунт (ИГЭ-4)	5.50	12,3	25	12	2,0	-5.80 VIB
лабо-ереднезаторфованный грунт (ИГЭ-5)	7.50	17,7	16	26	4,5	
Горф, сильнозггорфованный грунт (ИГЭ-4)	8.70	12,3	25	12	2,0	
лабо-среднезаторфованный грунт (ИГЭ-5)	9.70	17,7	16	26	4,5	
Суглинок пылеватый средней прочности (ИГЭ-2)	10.90	20,3	29	23	7	
Суглинок с примесью органического кщества средней прочности (ИГЭ-6)	12.30	19,9	23	18	7	
Песок крупный и гранелистый малопрочный (ИГЭ-7)	14.10	15.5 9.2	-	32	10	
Песок крупный и гранелистый средней прочности (ИГЗ-9)	15.50	17.4 10,3	-	38	26	
Песок крупный и гранелистый прочный (ИГЭ-10)		18,4		41	35	

Рис 1.Основание, армированное коническими сваями

Рис 2. Основание, армированное горизонтальными бетонными решетками

УДК 624.13

Исследование работы плитных фундаментов на основании армированном сваями

Бойко В. И.

Белорусский национальный технический университет

Испытание грунтов производилось штампом площадью 50000 см² с передачей статических нагрузок согласно ГОСТ 20276-99, использовалась силовая балка с анкерными сваями, служащая упором для гидравлического домкрата типа ДГ-200 грузоподъемностью 2000 кН. Испытания выполняли в котловане на глубинах 1,3–2,2 м ниже поверхности на слое грунта, армированного бетонными коническими столбами (рисунок 1).

При испытании грунтов на данном объекте давления под подошвами штампов достигали $0,30~\mathrm{M}\Pi a$.

Грунт между армирующими элементами под фрагментом фундамента состоит из слоев насыпных грунтов и слоя песка среднего малопрочного. При наличии этой прослойки осадка подошвы штампа при указанном давлении была равна $14,50\,$ мм, а в основании на глубине $0,2\,$ м - $9,74\,$ мм, остаточная после разгрузки — $7,68\,$ мм. При этом модуль деформации грунта основания составил $E=29,55\,$ МПа. Армирование основания позволяет снизить осадку фундаментов при наличии слабых слоев грунта в активной зоне. Научный руководитель — Бойко И.Л.