где $k = \overline{1,n}$, $p_k(s) = p(s)$.

Попином

$$p_{k-1}(s) = (p_k(s) - a_k)/s$$
(3)

называется порождающим по отношению к полиному (2).

<u>Утверждение 1</u>. Корневой годограф порождающего полинома $p_{k-1}(s)$ относительно любого из его коэффициентов a_j представляет собой траектории начальных точек свободного годографа $p_k(s)$.

<u>Утверждение 2</u>. Если полином $p_{k-1}(s)$, который является порождающим по отношению к полиному $p_k(s)$, асимптотически устойчив, то все начальные точки свободного корневого годографа $p_k(s)$, за исключением нулевой, располагаются в левой полуплоскости корней.

<u>Утверждение 3</u>. Если все начальные точки свободного корневого годографа полинома p(s) степени k, за исключением одной в начале координат, располагаются в левой полуплоскости s, то для асимптотической устойчивости этого полинома необходимо и достаточно, чтобы

$$0 < a_k < \inf A_k, \tag{4}$$

где A_k — множество значений свободного члена a_k в точках пересечения границы асимптотической устойчивости положительными ветвями корневого годографа p(s).

Поэтому для синтеза интервального полинома на основе номинального полинома (1) требуется настроить последовательно, начиная с n=1, каждый коэффициент a_j полинома (1) посредством настройки свободного члена a_k соответствующего k-го полинома расширения (2) согласно условию (4), приняв k=j.

Литература:

1. Несенчук, А.А. Корневой метод синтеза устойчивых полиномов путем настройки всех коэффициентов / А.А. Несенчук // Автоматика и телемеханика. – $2010. - N_{\odot} 8. - C. 13-24.$

УДК 517.4

Асимптотическая устойчивость скалярного уравнения с запаздыванием

Шавель Н.А.

Белорусский национальный технический университет

Рассмотрим скалярное дифференциальное уравнение с запаздыванием

$$\dot{x}(t) = f(t, x_t), f(t, 0) \equiv 0,$$

где $x_t(\theta) = x(t+\theta), \theta \in [-r; 0], r \in \mathbb{R}_+$. Предположим, что правая часть уравнения допускает оценку

$$-a(t)\mu(\varphi) \le f(t,\varphi) \le a(t)\mu(-\varphi),$$

где
$$a: \mathbb{R}_+ \to \mathbb{R}_+$$
, $\mu(\varphi) = \max \left\{0, \max_{-r \le \theta \le 0} \varphi(\theta)\right\}$, $\varphi \in C\left(\left[-r; 0\right]\right)$, $t \in \mathbb{R}_+$.

Пусть для некоторых $\alpha \leq \frac{3}{2}$ и непрерывной функции $p:\mathbb{R}_+ \to \mathbb{R}$ имеют место условия

$$\int_{t}^{t+r} a(s)ds \le \alpha + p(t), \ \forall t \in \mathbb{R}_{+}, \quad \int_{t-\Delta}^{t} a(s)p(s)ds \le 0, \ \forall t \ge r,$$

где $\Delta = \Delta(t) = \min \left\{ r, \sup \left\{ 0 \le \tau \le t : \int_{t-\tau}^t a(s) ds \le 1 \right\} \right\}$, а для любой непрерывной функции $\mathbf{u} : \mathbb{R}_+ \to \mathbb{R}$, такой, что $\mathbf{u}(\mathbf{t}) \to const \ne 0, \mathbf{t} \to \infty$, верно $\int_a^\infty f\left(s,u_s\right) ds = \infty, \forall a > 0$. Тогда дифференциальное уравнение асимптотически устойчиво.

Если последнее условие заменить более сильным условием $\int\limits_{a}^{a+T}f\left(s,u_{s}\right) ds>c, \forall a>0\;,\; \text{где}\;\;T=T(c)>0\;\;\text{можно подобрать для любого}$ $c>0\;,\;$ то дифференциальное уравнение равномерно асимптотически устойчиво.

УДК 519.85

Алгоритм решения задачи о ранце на основе перехода к подзадаче с минимально возможным числом вариантов

Чебаков С.В., Серебряная Л.В. Объединенный институт проблем информатики НАН Беларуси, Белорусский государственный университет информатики и радиоэлектроники

Рассмотрим следующую постановку задачи о ранце [1,2]. Каждому 362