Белорусском национальном техническом университете.

УДК 621.9

Моделирование работы сверла на выходе из обрабатываемого отверстия

Беляева Г.И., Мосейчук О.О. Белорусский национальный технический университет

Из опыта обработки отверстий сверлом установлено, что качество поверхности просверленного отверстия в месте выхода режущей части хуже, чем на остальной. Анализ сил, действующих на сверло, показал, что от действия большой по величине осевой составляющей силы резания, система станок приспособление – инструмент – заготовка в направлении оси сверла упруго деформируется и накапливает потенциальную энергию, которую сохраняет до начала выхода сверла из материала. После выхода вершины сверла при дальнейшем сверлении происходит скачкообразное уменьшение ширины среза и осевой силы резания, в результате чего потенциальная энергия сжатой системы переходит в кинетическую и скорость осевого перемещения (подача) сверла возрастает. Причём интенсивность возрастания может быть большой: образно говоря, сверло «выстреливает». Принимая силу упругости системы пропорциональной его перемещению с коэффициентом пропорциональности с, определим скорость подачи сверла на выходе его заборного конуса из отверстия при следующих данных: длина заборного конуса- 1_{3к}; скорость подачи шпинделя - 00; упругая деформация системы под действием осевой силы P_{oc}^{max} при сверлении в сплошном материале — λ ; масса шпинделя со сверлом m. Осевая сила на выходе сверла изменяется по закону $P_{oc} = P_{oc}^{\max} - kx^2$, где k постоянный для данных условий обработки коэффициент пропорциональности; х – величина осевого перемещения вершины сверла относительно края отверстия. Для определения скорости осевого перемещения применили теорему об изменении кинетической энергии материальной точки.

$$\begin{split} \frac{mv^2}{2} - \frac{mv_0^2}{2} &= \sum A_k \; ; \; \sum A_k = A(m\overline{g}) + A(\overline{F_y}) + A(\overline{P_{oc}}) \quad A(m\overline{g}) = mgl_{_{3K}} \; ; \\ A(\overline{P_{oc}}) &= -\int\limits_0^{l_{_{3K}}} P_{oc} dx = -\int\limits_0^{l_{_{3K}}} (P_{oc}^{\max} - kx^2) dx = (k\frac{l_{_{3K}}^2}{3} - P_{oc}^{\max}) l_{_{3K}} \\ A(\overline{F_y}) &= \frac{c}{2} (\lambda_2^2 - \lambda_1^2) = \frac{c\lambda^2}{2} \; ; \qquad \sum A_k = (mg + \frac{kl_{_{3K}}^2}{3} - P_{oc}^{\max}) l_{_{3K}} + \frac{c\lambda^2}{2} \; ; \\ v &= v_{_{6blX}} \; ; \qquad v_{_{6blX}}^2 = v_0^2 + \frac{2}{m} \sum A_k = v_0^2 + \frac{2}{m} (mg + \frac{kl_{_{3K}}^2}{3} - P_{oc}^{\max}) l_{_{3K}} + \frac{c\lambda^2}{m} \; . \end{split}$$