УДК 510.22+519.237.8

МЕТОД ЧАСТИЧНОГО ОБУЧЕНИЯ ДЛЯ ЭВРИСТИЧЕСКОГО АЛГОРИТМА ВОЗМОЖНОСТНОЙ КЛАСТЕРИЗАЦИИ ПРИ НЕИЗВЕСТНОМ ЧИСЛЕ КЛАССОВ

Канд. филос. наук ВЯТЧЕНИН Д. А.

Объединенный институт проблем информатики НАН Беларуси

В задачах сегментации изображений, обработки результатов научных исследований, при проектировании разнообразных систем поддержки принятия решений особая роль отводится нечетким методам автоматической классификации, в специальной литературе [1] именуемым также методами нечеткой кластеризации или нечеткими методами численной таксономии. В задачах кластеризации данные об исследуемой совокупности традиционно представляются либо матрицей $X_{n \times m} = [\hat{x}_i^t],$ i = 1, ..., n, t = 1, ..., m, именуемой матрицей «объект-признак», где x_i , i = 1, ..., n объекты исследуемой совокупности X, а \hat{x}^t , t = 1, ..., m — значения признаков объектов $x_i \in X$, каждый из которых, таким образом, представляет собой точку в т-мерном признаковом пространстве, либо матрицей $P_{n \times n} = [\rho_{ii}], i, j = 1, ..., n$ попарных коэффициентов близости или различия объектов, носящей название «объект-объект». При обработке данных методами нечеткой кластеризации результатом классификации является не только отнесение і-го объекта исследуемой совокупности $X = \{x_1, ..., x_n\}$ к l-му классу A^l , $l=1,\ldots,c$, но и указание функции принадлежности $u_{li} \in [0,1]$, l = 1, ..., c, i = 1, ..., n, с которой объект $x_i \in X$, $\forall i = 1, ..., n$ принадлежит нечеткому кластеру A^{l} , l = 1, ..., c, так что главной особенностью нечетких методов кластеризации является сочетание высокой точности с содержательной осмысленностью результатов классификации.

Наиболее распространенным подходом к решению нечеткой модификации задачи автоматической классификации является оптимизационный подход, методы которого отыскивают экстремум некоторого критерия качества классификации, примером которого может послужить критерий Дж. Беждека:

$$Q_{B}(P, \overline{T}) = \sum_{l=1}^{c} \sum_{i=1}^{n} u_{li}^{\gamma} \|x_{i} - \overline{\tau}^{l}\|^{2},$$
 (1)

где c — число нечетких кластеров в искомом нечетком c-разбиении P; $1 < \gamma < \infty$ — показатель, определяющий степень нечеткости классификации; $\overline{T} = \{\overline{\tau}^l, ..., \overline{\tau}^c\}$ — множество прототипов нечетких кластеров A^l , l = 1, ..., c. Локальный минимум критерия (1) отыскивается при ограничении:

$$\sum_{l=1}^{c} u_{li} = 1, \quad l = 1, \dots, c; \quad i = 1, \dots, n,$$
 (2)

именуемом в специальной литературе условием нечеткого *с*-разбиения и являющемся общим для всех оптимизационных методов нечеткой кластеризации. Численная процедура, минимизирующая (1), широко известна в специальной литературе под обозначением FCM-алгоритма и является основой семейства других нечетких кластер-процедур.

Разновидностью оптимизационных методов нечеткой кластеризации являются методы возможностной кластеризации [2], специфика которых заключается в том, что структура, образуемая нечеткими кластерами, удовлетворяет условию возможностного разбиения:

$$\sum_{l=1}^{c} \mu_{li} > 1, \quad l = 1, \dots, c; \quad i = 1, \dots, n,$$
 (3)

являющегося менее жестким, чем условие нечеткого c-разбиения (2), и значения принадлежности μ_{li} , $l=1,\ldots,c$, $i=1,\ldots,n$ интерпретируются как степени типичности объекта x_i для нечеткого кластера, а функция принадлежности интерпретируется как функция распределения возможностей. Методы возможностной кластеризации получают все большее распространение как в теоретических исследованиях, так и на практике в силу их устойчивости к наличию в исследуемой совокупности аномальных наблюдений и простоты интерпретации результатов классификации.

В [3] предложен подход к решению нечеткой модификации задачи автоматической классификации, использующей так называемый механизм частичного обучения, сущность которого заключается в том, что относительно некоторого подмножества $X_L = \{x_{L(1)}, ..., x_{L(c)}\}$ объектов исследуемой совокупности X = $= \{x_1, ..., x_n\}$ имеется априорная информация об их принадлежности классам A^l , $l=1, \ldots, c$ нечеткого c-разбиения P, которая может быть использована при построении оптимальной классификации. Иными словами, если X_L – множество помеченных объектов, $X_L \subset X$, элементы которого представлены булевыми векторами $s = (s_1, s_2, ..., s_n)^T$, где T – символ транспонирования и $s_{li}=1$, если $x_i\in X_L$ и объект x_i является меткой для нечеткого кластера A^{l} , $l \in \{1, ..., c\}$, т. е. $x_i = x_{L(l)}$; в противном случае, если $x_i \notin X_L$, то имеет место $s_{li} = 0$. В свою очередь $Y_{c \times n} = [y_{li}], l = 1, ..., c; i = 1, ..., n$ матрица нечеткого с-разбиения, составляемая исследователем в соответствии со следующим правилом: если $x_i \in X_L$, то y_{li} задается иссле-

дователем с соблюдением условия $\sum_{l=1}^{c} y_{li} = 1$,

где y_{li} – степень принадлежности помеченного объекта x_i , $x_i \in X_L$ классу A^l , $l=1,\ldots,c$; иначе, при $x_i \not\in X_L$ соответствующий столбец в матрице $Y_{c\times n}$ оказывается не нужным и пропускается при обработке матрицы $Y_{c\times n}$. В таком случае задача классификации состоит в минимизации критерия вида

$$Q_{P}(P, \overline{T}) = \sum_{l=1}^{c} \sum_{i=1}^{n} u_{li}^{2} \|x_{i} - \overline{\tau}^{l}\|^{2} + \sum_{l=1}^{c} \sum_{i=1}^{n} (u_{li} - s_{li} y_{li})^{2} \|x_{i} - \overline{\tau}^{l}\|^{2}$$

$$(4)$$

при ограничении (2).

В [3] предложены различные модификации критерия (4), одна из которых базируется на взвешивании в (4) обоих слагаемых, а другая – с заменой в качестве функции расстояния квадрата евклидовой нормы на квадрат расстояния Махаланобиса. С содержательной точки зрения, минимизация первого слагаемого в (4), полностью совпадающего с критерием (1) при $\gamma = 2$, минимизирует нечеткие суммы квадратов расстояний от объектов до прототипов нечетких кластеров, а второе слагаемое в (4) является взвешенной по квадратам расстояний суммой отклонений расчетных значений функции принадлежности объектов нечетким кластерам от заданных априорно. Очевидно, что помеченные объекты частично определяют структуру строящейся классификации исследуемой совокупности X, и множество X_L может интерпретироваться как частично обучающая выборка, элементы которого являются эталонами для классификации. Однако следует указать, что выбор экспертом помеченных объектов и априорных значений принадлежности существенно влияет на результат классифи-

Априорная информация о принадлежности некоторых объектов исследуемой совокупности классам искомого нечеткого *с*-разбиения позволяет значительно повысить как точность классификации, так и скорость сходимости кластер-процедуры, что также демонстрируется в [3], в силу чего подход к нечеткой кластеризации, использующей аппарат частичного обучения, получил дальнейшее развитие, а соответствующие методы широко внедряются при решении разнообразных задач [4, 5].

Как отмечалось выше, наибольшее распространение получили оптимизационные методы нечеткой кластеризации, вводящие задачу классификации в сугубо математическое русло, однако эвристические методы нечеткой кластеризации, несмотря на меньшее распространение, являются также удобным инструментом

анализа данных в силу их простоты и наглядности. В [6] предложен эвристический метод нечеткой кластеризации, заключающийся в построении так называемого распределения по априори задаваемому числу с нечетких α-кластеров, удовлетворяющих введенному определению. В свою очередь в [7] было продемонстрировано, что распределение по нечетким α-кластерам является частным случаем возможностного разбиения (3), и соответствующая процедура, как и ее последующие модификации, представляет собой эвристический алгоритм возможностной кластеризации, в силу чего предложенная в [6] версия алгоритма, от аббревиатуры английских терминов direct прямой и allotment among fuzzy clusters - pacпределение по нечетким кластерам, получила обозначение D-AFC(c)-алгоритма. Если $X = \{x_1, ..., x_n\}$ – совокупность объектов, на которой определена нечеткая толерантность T с функцией принадлежности $\mu_T(x_i, x_i)$, i, j = 1, ..., n, т. е. бинарное нечеткое отношение на X, удовлетворяющее условиям симметричности и рефлексивности, и информация о совокупности Х представлена в виде матрицы коэффициентов близости $\rho_{n \times n} = [\mu_T(x_i, x_i)]$, так что строки или столбцы этой матрицы являются нечеткими множествами $\{A^1, ..., A^n\}$, то для некоторого α , $\alpha \in (0,1]$, нечеткое множество уровня α , определяемое условием $A_{(\alpha)}^l =$ $=\{(x_i,\mu_{A^l}(x_i))|\mu_{A^l}(x_i)\geq \alpha\},\ l\in [1,n],\$ такое, что $A_{(\alpha)}^l \subseteq A^l$, $A^l \in \{A^1, \dots, A^n\}$, будет называться нечетким а-кластером с функцией принадлежности μ_{li} объекта $x_i \in X$ нечеткому α -кластеру $A_{(\alpha)}^l$, определяемой выражением

$$\mu_{li} = \begin{cases} \mu_{A^l}(x_i), & x_i \in A_{\alpha}^l; \\ 0 - \text{в противном случае,} \end{cases}$$
 (5)

где $A_{\alpha}^{l} = \{x_{i} \in X \mid \mu_{A^{l}}(x_{i}) \geq \alpha\}$ — α -уровень A^{l} , $l \in \{1, ..., n\}$. Объект $x_{i} \in X$, обладающий наибольшим значением функции принадлежности μ_{li} некоторому нечеткому α -кластеру $A_{(\alpha)}^{l}$, именуется его типичной точкой и обозначает-

ся τ^l , а функция принадлежности, определяемая выражением (5), показывает степень сходства і-го объекта множества Х с типичной точкой τ^l соответствующего нечеткого α -кластера. Если условие (3) выполняется для всех $A_{(\alpha)}^{l} \in R_{z}^{\alpha}(X)$, где $R_{z}^{\alpha}(X) = \{A_{(\alpha)}^{l} | l = \overline{1, c}, 2 \le c \le n\}$ семейство с нечетких а-кластеров для некоторого значения α , порожденных заданной на Xнечеткой толерантностью Т, то это семейство является распределением множества классифицируемых объектов X по c нечетким а-кластерам. Условие (3) в рассматриваемом случае требует, чтобы все объекты совокупности Х были распределены по с нечетким α -кластерам $\{A_{(\alpha)}^1, ..., A_{(\alpha)}^c\}$ с положительными значениями μ_{li} , l=1, ..., c, i=1, ..., n.

Сущность D-AFC(c)-алгоритма заключается в построении множества допустимых решений $B(c) = \{R_z^\alpha(X)\}$ для c классов с последующим выбором в качестве решения задачи классификации некоторого единственного распределения $R^*(X) \in B(c)$. Выбор $R^*(X)$ основывается на вычислении для всех $R_z^\alpha(X) \in B(c)$ критерия

$$F(R_z^{\alpha}(X), \alpha) = \sum_{l=1}^{c} \frac{1}{n_l} \sum_{i=1}^{n_l} \mu_{li} - \alpha c,$$
 (6)

определяющего качество каждого $R_z^{\alpha}(X) \in B(c)$, где $n_l = card(A_{\alpha}^l)$ — мощность носителя нечеткого множества $A_{(\alpha)}^l \in R_z^{\alpha}(X)$, $l \in \{1, ..., c\}$, $\alpha \in (0, 1]$, так что (6) определяет среднюю суммарную принадлежность объектов множества X нечетким α -кластерам $\{A_{(\alpha)}^l, ..., A_{(\alpha)}^c\}$ распределения $R_z^{\alpha}(X)$ за вычетом величины αc , регуляризующей число классов в $R_z^{\alpha}(X)$, и оптимальному распределению $R^*(X)$ соответствует максимальное значение (6), так что решение состоит в построении распределения, удовлетворяющего условию

$$R^*(X) = \arg \max_{R_z^{\alpha}(X) \in B(c)} F(R_z^{\alpha}(X), \alpha).$$
 (7)

Результатом работы D-AFC(c)-алгоритма является не только распределение $R^*(X)$ объ-

ектов совокупности X по заданному числу c нечетких α -кластеров, но и соответствующее значение порога сходства α .

Как указывалось выше, D-AFC(c)-алгоритм представляет собой базовую версию кластерпроцедуры. В работе [7] предлагается его модификация, использующая аппарат частичного обучения, в силу чего (partial supervision - частичное обучение) получившая обозначение D-AFC-PS(c)-алгоритма. Механизм частичного обучения, используемый в D-AFC-PS(c)-алгоритме, достаточно прост: если $X_L = \{x_{L(1)}, ...,$ $x_{L(c)}$ – множество помеченных объектов, и объект $x_i \in X_L$ является меткой для нечеткого α-кластера $A_{(\alpha)}^l$, $l \in \{1, ..., c\}$, т. е. $x_i = x_{L(l)}$, то априорное значение принадлежности y_{li} помеченного объекта x_i соответствующему $A_{(\alpha)}^l$, $l \in \{1, ..., c\}$ задается исследователем, при этом $card(X_I) = c$, т. е. общее количество помеченных объектов равно числу с нечетких α -кластеров в искомом распределении $R^*(X)$, и каждый помеченный объект должен быть распределен в единственный нечеткий акластер, а результирующее значение принадлежности

а результирующее значение принадлежности μ_{li} помеченного объекта x_i нечеткому α -кластеру $A_{(\alpha)}^l$, $l \in \{1, ..., c\}$ должно быть не меньшим, чем заданное априорно y_{li} . По сравнению с методом, используемым в алгоритме В. Педрича, метод частичного обучения, используемый в D-AFC-PS(c)-алгоритме, очевидно, является менее громоздким, простым в реализации и ясным с содержательной точки зрения.

Вместе с тем при решении задач, требующих высокой точности классификации в условиях ограниченного лимита времени, что имеет большое значение в системах поддержки принятия решений специального назначения, помимо экспертного знания о принадлежности объектов классам, используемого при построении множества $X_L = \{x_{L(1)}, ..., x_{L(c)}\}$ и задании априорных значений принадлежности y_{li} для элементов X_L , оказывается необходимым проведение предварительного анализа исследуемой совокупности с целью получения обучаю-

щей информации для последующего применения методов нечеткой кластеризации с частичным обучением. Указанный подход, основанный на предварительной обработке исследуемой совокупности с помощью D-AFC(c)-алгоритма и выбором в качестве помеченных объектов типичных точек $\{\tau^1, ..., \tau^c\}$ нечетких α -кластеров $A_{(\alpha)}^{l}$, l = 1, ..., c, полученного распределения $R^*(X)$ с последующей обработкой данных алгоритмом В. Педрича, был предложен в [8] и продемонстрировал высокую эффективность. В [9] предложен подход к построению множества \boldsymbol{X}_L и соответствующих значений y_{li} для использования в D-AFC-PS(c)-алгоритме, основанный на предварительной обработке данных об X некоторой оптимизационной нечеткой кластер-процедурой с последующим вычислением расстояния $d(x_i, \overline{\tau}^l)$ от всех объектов $x_i \in X$ до прототипов $\{\overline{\tau}^1, ..., \overline{\tau}^c\}$ кластеров A^l , l=1,...,c нечеткого c-разбиения P, нормировкой $\tilde{d}(x_i, \overline{\tau}^l) = d(x_i, \overline{\tau}^l) / \left(\max_i d(x_i, \overline{\tau}^l) \right)$ вычислением коэффициентов близости $\tilde{s}(x_i, \overline{\tau}^l) = 1 - \tilde{d}(x_i, \overline{\tau}^l)$, так что объекты, находящиеся наиболее близко к прототипам, могут быть выбраны в качестве помеченных, а соответствующие значения $\tilde{s}(x_i, \overline{\tau}^l)$ – в качестве априорных значений принадлежности y_{ii} .

Подходы, предложенные в [8, 9], требуют априорного знания о числе с классов в искомом нечетком c-разбиении P или распределении по нечетким α -кластерам $R^*(X)$. В ряде ситуаций оказывается необходимым построить максимально точную классификацию в условиях полного отсутствия информации об исследуемой совокупности Х. В таком случае вначале представляется целесообразной обработка Х кластер-процедурой, автоматически определяющей число классов с, с последующим выделением множества X_L с соответствующими значениями $y_{li}, l \in \{1, ..., c\}$, для чего можно воспользоваться предложенной в [10] модификацией D-AFC(c)-алгоритма, использующей транзитивное замыкание нечеткой толерантности, в силу чего - от аббревиатуры выражения

transitive closure - получившей условное обозначение D-AFC-TC-алгоритма. Так как транзитивное замыкание нечеткой толерантности представляет собой нечеткую эквивалентность, разбивающую предметную область на непересекающиеся классы, для распределений $R_z^{\alpha}(X)$ различных уровней а число нечетких кластеров с будет различным, и задачей классификации является выделение априори неизвестного числа нечетких а-кластеров, для чего в последовательности $0 < \alpha_0 < ... < \alpha_l < ... < \alpha_Z = 1$ на основе вычисления скачка значений порога α опрелеляется такое значение α_{l} , которому соответствует некоторое неизвестное число нечетких α -кластеров c. Помимо того, что D-AFC-TC-алгоритм отыскивает априори неизвестное число с нечетких а-кластеров, отличающих его от D-AFC(c)-алгоритма, особенностями является, во-первых, то, что для D-AFC-TC-алгоритма матрицей исходных данных является матрица «объект-признак», и для решения задачи классификации используются как критерий (6), так и некоторая метрика $d(x_i, x_i)$, а, во-вторых, то обстоятельство, что результатом работы D-AFC-TC-алгоритма будут также координаты прототипов $\{\overline{\tau}^1, ..., \overline{\tau}^c\}$ нечетких α -кластеров $\{A_{(\alpha)}^1, ..., A_{(\alpha)}^c\}$ распределения $R^*(X)$. В силу того что транзитивное замыкание нечеткой толерантности искажает геометрическую структуру исследуемой совокупности X, D-AFC-TC-алгоритм оказывается полезным только на этапе разведочного анализа данных. Таким образом, сущность предлагаемого метода частичного обучения для использования в D-AFC-PS(c)-алгоритме в условиях отсутствия информации о числе классов c, на которые «расслаивается» множество объектов X, заключается в построении с помощью D-AFC-TC-алгоритма распределения $R^*(X)$ по неизвестному числу с нечетких а-кластеров с последующим выбором в качестве элементов множества X_L типичных точек $\{\tau^1, ..., \tau^c\}$ нечетких α -кластеров. В качестве значения y_{li} , $l \in \{1, ..., c\}$, общего для всех помеченных объектов, целесообразно выбрать полученное в результате работы D-AFC-TC-алгоритма значение порога сходства α , так как при обработке данных D-AFC-PS(c)-алгоритмом геометрическая структура X не претерпевает изменений, и типичными точками классов распределения $R^*(X)$, полученного с помощью D-AFC-PS(c)-алгоритма, могут оказаться другие объекты.

Эффективность предложенного подхода к построению подмножества помеченных объектов и определению априори задаваемой функции принадлежности для использования в D-AFC-PS(c)-алгоритме целесообразно проиллюстрировать на простом примере. Для проведения вычислительного эксперимента были выбраны представленные на рис. 1 двумерные данные о 15 объектах, предложенные в [11].

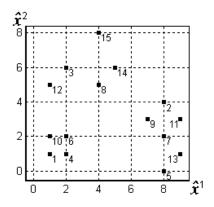


Рис. 1. Двумерные данные для проведения вычислительного эксперимента

На рис. 1 визуально выделяются три группы объектов — $\{x_1, x_4, x_6, x_{10}\}$; $\{x_3, x_8, x_{12}, x_{14}, x_{15}\}$ и $\{x_2, x_5, x_7, x_9, x_{11}, x_{13}\}$, которые в дальнейшем будут использованы для верификации результатов вычислительных экспериментов. Обозначая объекты символами x_i , $i=1,\ldots,15$, а признаки — символами \hat{x}^t , t=1,2, была получена матрица «объект—признак» $X_{15\times 2}=[\hat{x}_i^t]$, которая обработана с помощью нормализации [12]:

$$x_i^t = \frac{\hat{x}_i^t}{\max_i \hat{x}_i^t}, \quad i = 1, ..., n; \quad t = 1, ..., m,$$
 (8)

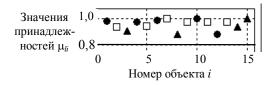
вследствие чего каждый объект может интерпретироваться как нечеткое множество на уни-

версуме признаков с функцией принадлежности $\mu_{x_i}(x^i)$, $i=1,\ldots,n$, с последующим применением квадрата относительного евклидова расстояния между нечеткими множествами [10]

$$e^{2}(x_{i}, x_{j}) = \frac{1}{m} \sum_{t=1}^{m} \left(\mu_{x_{i}}(x^{t}) - \mu_{x_{j}}(x^{t}) \right)^{2},$$

$$i, j = 1, \dots, n; \quad t = 1, \dots, m,$$
(9)

и операции дополнения $\mu_T(x_i,x_j)=1-e^2(x_i,x_j)$, $i,j=1,\ldots,15$, была построена матрица нечеткой толерантности $T_{15\times 15}=[\mu_T(x_i,x_j)]$, результатом обработки которой с помощью D-AFC(c)-алгоритма при числе классов c=3 является распределение $R^*(X)$ по полностью разделенным нечетким α -кластерам, полученное при значении порога сходства $\alpha=0,7912$. Значения принадлежности объектов исследуемой совокупности нечетким α -кластерам представлены на рис. 2.

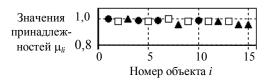


Puc. 2. Результат обработки множества объектов D-AFC(c)-алгоритмом

На рис. 2 и последующих рисунках значения принадлежностей объектов 1-му классу обозначены символом «•», 2-му — символом «•», и 3-му — символом «представленного на рис. 2 результата классификации позволяет выделить в качестве типичной точки τ^1 первого класса объект x_{10} , типичной точки τ^2 второго — объект x_{15} , а для третьего класса имеет место $\tau^3 = x_7$; в свою очередь носители нечетких α -кластеров полученного распределения $R^*(X)$ образуют группы $\{x_1, x_4, x_6, x_{10}, x_{12}\}$, $\{x_3, x_8, x_{14}, x_{15}\}$ и $\{x_2, x_5, x_7, x_9, x_{11}, x_{13}\}$, что ввиду отнесения объекта x_{12} к 1-му классу не совпадает с визуальным выделением классов на рис. 1.

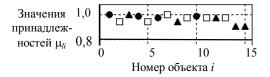
В результате обработки исходных данных D-AFC-TC-алгоритмом с помощью нормировки

(8) и расстояния (9) было получено распределение $R^*(X)$ также по трем нечетким α -кластерам при значении порога сходства $\alpha = 0.9609$, значения принадлежности объектов которым изображены на рис. 3.



Puc. 3. Результат обработки множества объектов D-AFC-TC-алгоритмом

Носители нечетких α-кластеров представляют собой подмножества $\{x_1, x_4, x_6, x_{10}\},$ $\{x_3, x_8, x_{12}, x_{14}, x_{15}\}$ M $\{x_2, x_5, x_7, x_9, x_{11}, x_{13}\},$ соответствующие визуально выделенным на рис. 1 классам, а типичными точками нечетких α -кластеров являются объекты $\tau^1 = x_1$, $\tau^2 = x_3$ и $\tau^3 = x_7$ соответственно. Таким образом, соответствующие объекты были выбраны в качестве помеченных с общим для всех значением априорной функции принадлежности y_{li} = $=0,9609,\ l=1,\ \ldots,\ 3,\ i=1,\ \ldots,\ 3,\ для обработки$ тестовых данных с помощью D-AFC-PS(c)-алгоритма. Значения принадлежностей объектов нечетким α -кластерам распределения $R^*(X)$, построенного с помощью D-AFC-PS(c)-алгоритма, изображены на рис. 4.



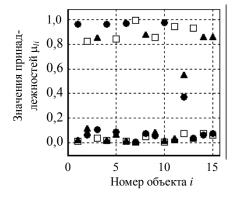
Puc. 4. Результат обработки множества объектов D-AFC-PS(c)-алгоритмом

Значение порога сходства при обработке данных с помощью D-AFC-PS(c)-алгоритма составило $\alpha=0,8220$, а выделение носителей нечетких α -кластеров дает классы $\{x_1,\ x_4,\ x_6,\ x_{10}\},\ \{x_3,\ x_8,\ x_{12},\ x_{14},\ x_{15}\}$ и $\{x_2,\ x_5,\ x_7,\ x_9,\ x_{11},\ x_{13}\},$ соответствующие визуально выделенным классам. Кроме того, в этом экс-

перименте, как и при обработке данных D-AFC-TC-алгоритмом, типичными точками нечетких α -кластеров являются объекты $\tau^1 = x_1$, $\tau^2 = x_3$ и $\tau^3 = x_7$, которые наименее удалены от геометрических центров соответствующих групп. Таким образом, вычислительный эксперимент наглядно демонстрирует не только преимущество использования механизма частичного обучения при обращении к эвристическому методу нечеткой кластеризации для решения задач классификации, но и эффективность предложенного метода частичного обучения.

Анализ результатов, полученных с помощью D-AFC(c)-алгоритма и D-AFC-PS(c)-алгоритма, проводился в сравнении с оптимизационными алгоритмами нечеткой кластеризации — FCM-алгоритмом и алгоритмом В. Педрича [3], минимизирующим критерий (4), при этом в обоих экспериментах полагалось c = 3, а в эксперименте с FCM-алгоритмом значение показателя нечеткости γ полагалось равным двум. Значения принадлежностей объектов нечетким кластерам, полученным с помощью FCM-алгоритма, изображены на рис. 5.

Интерпретация результатов классификации с помощью правила наибольшей принадлежности приводит к выделению групп $\{x_1, x_4, x_6, x_{10}\}$, $\{x_3, x_8, x_{12}, x_{14}, x_{15}\}$ и $\{x_2, x_5, x_7, x_9, x_{11}, x_{13}\}$, что совпадает с визуально выделенными на рис. 1 классами и результатами обработки данных D-AFC-PS(c)-алгоритмом. Однако следует отметить сравнительно невысокое значение принадлежности объекта x_{12} второму нечеткому кластеру.



Puc. 5. Результат обработки множества объектов FCM-алгоритмом

Обработка данных алгоритмом В. Педрича проводилась с помощью обучающей информации, использовавшейся при их обработке D-AFC-PS(c)-алгоритмом. Но так как обращение к алгоритму В. Педрича подразумевает использование в качестве обучающей информации матрицы нечеткого с-разбиения $Y_{c \times n} = [y_{li}]$, для ее построения значения y_{li} принадлежностей помеченного объекта классам, для которых он не является меткой, вычислялись по формуле $y_{li} = (1-\alpha)/(c-1)$, что обеспечивает выполнение условия нечеткого c-разбиения для $Y_{c\times n}$. Значения принадлежностей объектов классам нечеткого с-разбиения $P_{c \times n} = [u_{li}]$, полученного при обработке тестовых данных алгоритмом В. Педрича, изображены на рис. 6.

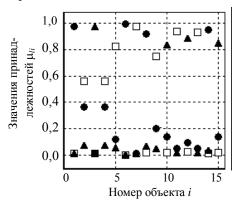


Рис. 6. Результат обработки множества объектов алгоритмом В. Педрича

Как и в случае эксперимента с FCM-алгоритмом, результат классификации интерпретировался на основе правила наибольшей принадлежности, что позволило выделить группы $\{x_1, x_6, x_8, x_{14}\}, \{x_3, x_{10}, x_{12}, x_{15}\}$ и $\{x_2, x_4, x_5, x_7, x_9, x_{11}, x_{13}\}$. Подобное искажение результатов классификации в сравнении с FCM-алгоритмом объясняется выбором нормализации (8), достаточно сильно искажающей геометрию исходных данных, для нормировки исходных данных при их обработке алгоритмом В. Педрича — на это обстоятельство указывают и одинаковые значения принадлежностей объектов x_2 и x_4 всем трем классам полученного нечеткого c-разбиения. В свою очередь, ис-

пользование унитаризации [12] для нормировки данных при сохранении прежней обучающей информации приводит к результатам, сходным с результатами обработки исходных данных FCM-алгоритмом, что свидетельствует о высокой чувствительности алгоритма В. Педрича к выбору способа нормировки. Кроме того, очевидно, что использованный способ задания априорных значений принадлежности для помеченных объектов в алгоритме В. Педрича недостаточно адекватен в силу различия условий нечеткого с-разбиения (2) и возможностного разбиения (3).

ВЫВОД

В работе предложен метод построения подмножества помеченных объектов и соответствующих априорных значений принадлежности для использования в эвристическом алгоритме возможностной кластеризации частичным обучением, основой которого является предварительная обработка данных с помощью модификации эвристического алгоритма возможностной кластеризации, не требуюшей задания параметров, что делает предложенный метод пригодным в условиях полного отсутствия априорной информации о структуре исследуемой совокупности. Анализ результатов вычислительных экспериментов наглядно демонстрирует высокую эффективность метода, использующего аппарат частичного обучения, в сравнении с базовой версией метода, a также нечеткими кластерпроцедурами. Следует также отметить, что предложенная схема двухэтапной возможносткластеризации позволяет производить классификацию данных в полностью автоматическом режиме.

ЛИТЕРАТУРА

- 1. **Bezdek, J. C.** Pattern recognition with fuzzy objective function algorithms / J. C. Bezdek. New York: Plenum Press, $1981. 230 \, p$.
- 2. **Krishnapuram, R.** A possibilistic approach to clustering / R. Krishnapuram, J. M. Keller // IEEE Transactions on Fuzzy Systems. 1993. Vol. 1. P. 98–110.
- 3. **Pedrycz, W.** Algorithms of fuzzy clustering with partial supervision / W. Pedrycz // Pattern Recognition Letters. 1985. Vol. 3. P. 13–20.
- 4. **Abonyi, J.** Supervised fuzzy clustering for the identification of fuzzy classifiers / J. Abonyi, F. Szeifert // Pattern Recognition Letters. 2003. Vol. 24. P. 2195–2207.
- 5. **Liu, H.** Evolutionary semi-supervised fuzzy clustering / H. Liu, S.T. Huang // Pattern Recognition Letters. 2003. Vol. 24. P. 3105–3113.
- 6. **Viattchenin, D. A.** A new heuristic algorithm of fuzzy clustering / D. A. Viattchenin // Control & Cybernetics. 2004. Vol. 33. P. 323–340.
- 7. **Viattchenin, D. A.** A direct algorithm of possibilistic clustering with partial supervision / D. A. Viattchenin // Journal of Automation, Mobile Robotics and Intelligent Systems. 2007. Vol. 1. P. 29–38.
- 8. **Viattchenin, D. A.** A methodology of fuzzy clustering with partial supervision / D. A. Viattchenin // Systems Science. 2007. Vol. 33. P. 61–71.
- 9. **Viattchenin, D. A.** Fuzzy objective function-based technique of partial supervision for a heuristic method of possibilistic clustering / D. A. Viattchenin // Neural Networks and Artificial Intelligence: Proceedings of the Fifth International Conference ICNNAI'2008. Minsk. 2008. P. 51–55.
- 10. Вятченин, Д. А. Прямые алгоритмы нечеткой кластеризации, основанные на операции транзитивного замыкания и их применение к обнаружению аномальных наблюдений / Д. А. Вятченин // Искусственный интеллект. 2007. № 3. С. 205—216.
- 11. **Looney, C. G.** Interactive clustering and merging with a new fuzzy expected value / C. G. Looney // Pattern Recognition. 2002. Vol. 35. P. 2413–2423.
- 12. **Walesiak, M.** Ugólniona miara odległości w statystycznej analizie wielowymiarowej / M. Walesiak. Wrocław: Wydawnictwo Akademii Ekonomicznej im. Oskara Langego, 2002. 107 s.

Поступила 23.03.2009