АНАЛИЗ КИНЕМАТИЧЕСКИХ ХАРАКТЕРИСТИК КАРДАННЫХ ПЕРЕДАЧ

Гурвич Ю. А., Сафронов К.И., Пащенко А.В.

Белорусский национальный технический университет, Минск

In this article described a new method of unevenness definition in dependence of obliquity angle and its influence on output cinematic characteristics of one-joint cardan shaft.

Связь между механизмами трансмиссий транспортных средств, например двигателя с коробкой передач при ее раздельной установке, коробки передач с раздаточной коробкой и от нее к передним и задним ведущим мостам осуществляется с помощью карданных передач.

Карданная передача состоит из одного или нескольких карданных шарниров (рисунок 1), соединенных карданными валами с промежуточными опорами (с промопорами) (рисунок 2).

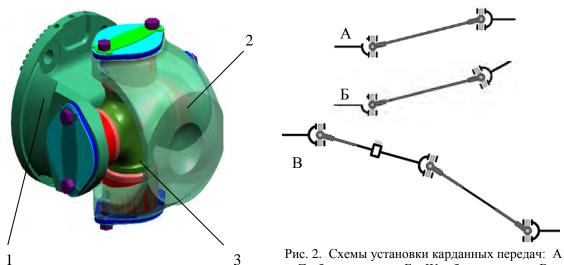
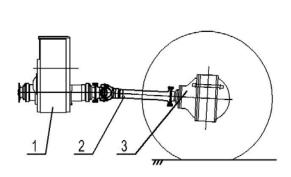


Рис. 1. Карданный шарнир: 1, 2 – вилки; 3 – крестовина

Рис. 2. Схемы установки карданных передач: А – Z-образная схема; Б – W- образная схема; В – передача с одним промежуточным валом и промогой;

С помощью карданных передач можно осуществить передачу мощности от двигателя к механизмам трансмиссии, удаленных друг от друга, расположенных в разных плоскостях и изменяющих свое первоначальное положение в процессе движения машины. Однако помимо достоинств, карданная передача обладает существенным недостатком, заключающимся в неравномерности вращения выходного вала, возникающая из-за угла излома. Эта неравномерность оказывает негативное влияние на выходные характеристики карданных передач и механизмов трансмиссии. Тем не менее, исследований, посвященных изучению этого важного вопроса, в литературе приведено не достаточно [1-2].


В данной работе сделана попытка провести более полное исследование кинематических характеристик одношарнирной карданной передачи с переменным углом излома, что позволит, в дальнейшем, на стадии проектирования машины обосновать выбор схемы карданной передачи с приемлемой для практики величиной неравномерности вращения выходного вала.

Рассмотрим трансмиссию транспортного средства (рисунок 3), где мощность от коробки передач к ведущему мосту передается посредством одношарнирной карданной передачи, которая в процессе движения машины может изменять свое первоначальное положение.

Для одношарнирной карданной передачи из литературы [1-2] известна зависимость (1) (рисунок 4).

$$\omega_2 = \omega_1 \cdot \frac{\cos(\alpha)}{1 - \sin^2(\alpha) \cdot \cos^2(\lambda)},\tag{1}$$

где λ - угол поворота ведущего вала; α - угол излома карданного шарнира.

 $\frac{2}{3}$ $\frac{1}{M_{\text{kp}}}$ $\frac{1}{\omega_1}$ $\frac{1}{\omega_2}$ $\frac{1}{\omega_2}$ $\frac{1}{\omega_2}$ $\frac{1}{\omega_1}$

Рис. 3. Схема установки одношарнирной карданной передачи на транспортном средстве: 1- коробка переключения передач; 2- карданный вал;

3- задний мост с колесами

Рис. 4. Кинематическая схема карданного шарнира: 1, 2 – вилки; 3 –крестовина; I – ось вращения вилки I; II – ось вращения вилки 2; α - угол между осями I и II; III – новое положение оси вращения вилки 2 при переменном угле α ; ω_1 и ω_2 - угловые скорости ведущего и ведомого валов

В выражении (1) введем замену:

$$K(\alpha, \lambda) = \frac{\cos(\alpha)}{1 - \sin^2(\alpha) \cdot \cos^2(\lambda)}.$$
 (2)

Тогда

$$\omega_2 = \omega_1 \cdot K(\lambda, \alpha). \tag{3}$$

Определим угловое ускорение ведомого вала ε_2 , взяв полную производную по времени от левой и правой частей выражения (3):

$$\varepsilon_2 = \frac{d\omega_2}{dt} = \frac{d\omega_1}{dt} \cdot K(\alpha, \lambda) + \omega_1 \cdot \left(\frac{\partial K(\alpha, \lambda)}{\partial \lambda} \cdot \frac{d\lambda}{dt} + \frac{\partial K(\alpha, \lambda)}{\partial \alpha} \cdot \frac{d\alpha}{dt} \right). \tag{4}$$

Представим выражение (4) в другом виде:

$$\varepsilon_{2} = \frac{d\omega_{2}}{dt} = \varepsilon_{1} \cdot K(\alpha, \lambda) + \omega_{1} \cdot \left(\frac{\partial K(\alpha, \lambda)}{\partial \lambda} \cdot \omega_{1} + \frac{\partial K(\alpha, \lambda)}{\partial \alpha} \cdot \omega_{\alpha} \right), \tag{5}$$

где $\omega_{\rm l}=\frac{d\lambda}{dt}$; $\varepsilon_{\rm l}$ - угловое ускорение входного вала; $\omega_{\alpha}=\frac{d\alpha}{dt}$ - угловая скорость ведомого вала при перемещении оси II в положение III (см. рисунок 4).

Для анализа выражения (5) рассмотрим четыре случая.

Первый случай. Угловое ускорение входного вала $\varepsilon_1 = \frac{d\,\omega_1}{dt} = 0$ (входной вал вращается равномерно), угловая скорость ведомого вала при перемещении оси II в положение III $\omega_\alpha = \frac{d\,\alpha}{dt} = 0$ (угол излома $\alpha = const$, ось II – неподвижна).

Выражение (5) примет вид:

$$\varepsilon_{2}^{(1)} = \omega_{l} \left(\frac{\partial K(\alpha, \lambda)}{\partial \lambda} \cdot \frac{d\lambda}{dt} \right) = \omega_{l}^{2} \cdot \frac{\partial K(\alpha, \lambda)}{\partial \lambda}. \tag{6}$$

В выражении (6) введем замены: $k\lambda(\alpha,\lambda)=\frac{\partial K(\alpha,\lambda)}{\partial \lambda},$ $\omega 1=\omega_1$ и $\varepsilon 21(\alpha,\lambda,\omega 1)=\varepsilon_2^{(1)}$.

Тогда $\varepsilon 21(\alpha,\lambda,\omega 1)$ примет вид:

$$\epsilon 21(\alpha, \lambda, \omega 1) := k\lambda(\alpha, \lambda) \cdot \omega 1^2$$

Найдем частную производную $k\lambda(\alpha,\lambda)$:

$$k\lambda(\alpha,\lambda) := \frac{\left(-1 + \cos(\alpha)^2\right) \cdot \left(2 \cdot \cos(\alpha) \cdot \cos(\lambda) \cdot \sin(\lambda)\right)}{1 - 2 \cdot \cos(\lambda)^2 + 2 \cdot \cos(\lambda)^2 \cdot \cos(\alpha)^2 + \cos(\lambda)^4 - 2 \cdot \cos(\lambda)^4 \cdot \cos(\alpha)^2 + \cos(\lambda)^4 \cdot \cos(\alpha)^4}$$

Построим графики зависимости углового ускорения $\varepsilon^{21}(\alpha,\lambda,\omega^1)$ в функции угла поворота ведущего вала λ при различных значениях угла излома α ($\omega_1 = 30\pi \ pa\partial/c$).

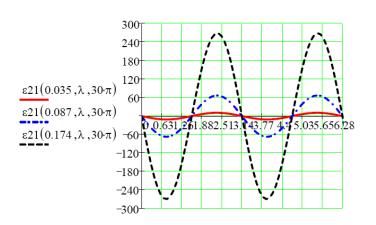


Рис. 5. График зависимости углового ускорения ϵ_{21} в функции угла поворота ведущего вала λ при различных значениях угла излома: α =0,035; 0,087; 0,174 рад (2°; 5°; 10°)

Второй случай. Угловое ускорение входного вала $\varepsilon_1 = \frac{d\omega_1}{dt} = 0$, угловая скорость ведомого вала при перемещении оси II в положение III $\omega_\alpha = \frac{d\alpha}{dt} \neq 0$ (при переменном угле α ось II - подвижна).

Выражение (5) примет вид:

$$\varepsilon_{2}^{(2)} = \omega_{1} \left(\frac{\partial K(\alpha, \lambda)}{\partial \lambda} \cdot \frac{d\lambda}{dt} + \frac{\partial K(\alpha, \lambda)}{\partial \alpha} \cdot \frac{d\alpha}{dt} \right) = \omega_{1}^{2} \cdot \frac{\partial K(\alpha, \lambda)}{\partial \lambda} + \omega_{1} \cdot \frac{\partial K(\alpha, \lambda)}{\partial \alpha} \cdot \omega_{\alpha}.$$

$$(7)$$

В выражении (7) введем замены:

$$k\alpha(\alpha,\lambda) = \frac{\partial K(\alpha,\lambda)}{\partial \alpha}, \quad \varepsilon 22\alpha = k\alpha(\alpha,\lambda) \cdot \omega 1 \cdot \omega_{\alpha}, \quad \varepsilon 22\lambda = k\lambda(\alpha,\lambda) \cdot (\omega 1)^{2},$$
$$\varepsilon 22(\alpha,\lambda) = \varepsilon_{2}^{(2)}.$$

Тогда $\varepsilon 22(\alpha,\lambda)$ примет вид:

$$\varepsilon 22\lambda(\alpha,\lambda) := \varepsilon 22\alpha(\alpha,\lambda) + \varepsilon 22\lambda(\alpha,\lambda)$$
.

Найдем частную производную $k\alpha(\alpha,\lambda)$:

$$k\alpha\big(\alpha\,,\lambda\big) := \frac{\left(-1 + \cos(\lambda)^2 + \cos(\lambda)^2 \cdot \cos(\alpha)^2\right) \cdot \sin(\alpha)}{1 - 2 \cdot \cos(\lambda)^2 + 2 \cdot \cos(\lambda)^2 \cdot \cos(\alpha)^2 + \cos(\lambda)^4 - 2 \cdot \cos(\lambda)^4 \cdot \cos(\alpha)^2 + \cos(\lambda)^4 \cdot \cos(\alpha)^4}$$

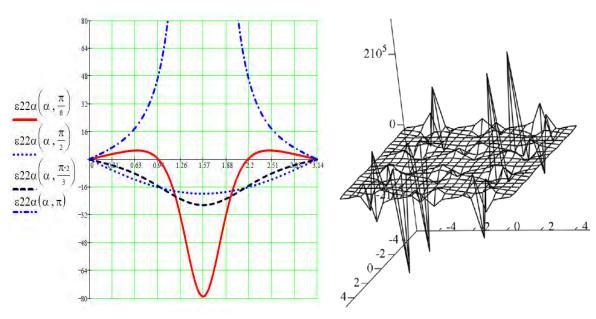


Рис. б. График зависимости углового ускорения ε22α в функции угла излома α при различных значениях

угла
$$\lambda$$
: $\lambda = \frac{\pi}{6}$; $\frac{\pi}{2}$; $\frac{2\pi}{3}$; π рад

Рис. 7. График зависимости углового ускорения ϵ 22 в функции двух углов: λ и α

Построим графики зависимости углового ускорения $\varepsilon 22\alpha(\alpha,\lambda)$ и $\varepsilon 22(\alpha,\lambda)$ при $\omega_1\cdot\omega_\alpha\cong\pi^2$.

Третий случай. Угловое ускорение входного вала $\varepsilon_1 = \frac{d\omega_1}{dt} \neq 0$, угловая скорость ведомого вала при перемещении оси II в положение III $\omega_\alpha = \frac{d\alpha}{dt} = 0$ (угол излома $\alpha = const$, ось II - неподвижна).

Выражение (5) примет вид:

$$\varepsilon_2^{(3)} = \frac{d\omega_1}{dt} \cdot K(\alpha, \lambda) + \omega_1^2 \cdot \frac{\partial K(\alpha, \lambda)}{\partial \lambda}.$$
 (8)

Тогда ε 23 (α,λ) примет вид: ε 23 (α,λ) := ε 1 · k (α,λ) + ω 1 2 · k $\lambda(\alpha,\lambda)$

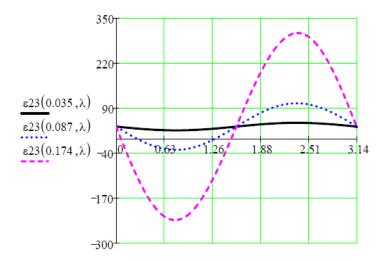


Рис. 5. График зависимости углового ускорения ϵ_{23} в функции угла поворота ведущего вала λ при различных значениях угла излома: α =0,035; 0,087; 0,174рад (2°; 5°; 10°)

Четвертый случай. Угловое ускорение входного вала $\varepsilon_1 = \frac{d\omega_1}{dt} \neq 0$, угловая скорость ведомого вала при перемещении оси II в положение III $\omega_\alpha = \frac{d\alpha}{dt} \neq 0$ (при переменном угле α ось II - подвижна).

Выражение (5) примет вид:

$$\varepsilon_{2}^{(4)} = \frac{d\omega_{1}}{dt} \cdot K(\alpha, \lambda) + \omega_{1}^{2} \cdot \frac{\partial K(\alpha, \lambda)}{\partial \lambda} + \frac{\partial K(\alpha, \lambda)}{\partial \alpha} \cdot \frac{d\alpha}{dt} \cdot \omega_{1}. \tag{9}$$

Тогда $\varepsilon 24(\alpha,\lambda)$ примет вид:

$$\varepsilon 24(\alpha,\lambda) := \varepsilon 1 \cdot k(\alpha,\lambda) + \omega 1^2 \cdot k\lambda(\alpha,\lambda) + \omega\alpha \cdot \omega 1 \cdot k\alpha(\alpha,\lambda)$$

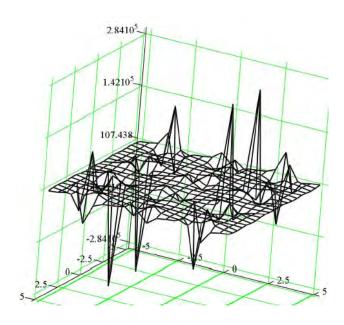


Рис. 9. График зависимости углового ускорения $\epsilon 24$ в функции двух углов: λ и α

Литература

- 1. Лойцянский Л.Г., Лурье А.И., Курс теоретической механики, ч.1, М.: 1954 379с.
- 2. Малаховский Я.Э., Лапин А.А., Веденеев Н.К., Карданные передачи, М.: 1962 155с.