Министерство образования Республики Беларусь БЕЛОРУССКАЯ ГОСУДАРСТВЕННАЯ ПОЛИТЕХНИЧЕСКАЯ АКАДЕМИЯ

Кафедра «Экология»

И.А.Трусова Н.Г.Малькевич

ОПРЕДЕЛЕНИЕ МАССЫ ОКСИДА УГЛЕРОДА ПРИ СЖИГАНИИ ОРГАНИЧЕСКОГО ТОПЛИВА

Методическое пособие по курсу «Отраслевая экология» для студентов всех специальностей

Министерство образования Республики Беларусь БЕЛОРУССКАЯ ГОСУДАРСТВЕННАЯ ПОЛИТЕХНИЧЕСКАЯ АКАДЕМИЯ

Кифедра «Экология»

И.А.Трусова Н.Г.Малькевич

ОПРЕДЕЛЕНИЕ МАССЫ ОКСИДА УГЛЕРОДА ПРИ СЖИГАНИИ ОРГАНИЧЕСКОГО ТОПЛИВА

Методическое пособие по курсу «Отраслевая экология» лля студентов всех специальностей

УЛК 502.3

Трусова И.А. Малькевич И.Г. Определение массы оксила углерода при сжигании ортанического година. Метод пособие по курсу «Отраслева» экология» для студ всех спец. Ми. БГПА, 1999. - 22 с.

Методическое пособие «Определение массы оксида углерода при сжигании органического топлина» предназначено для студентов всех специальностей технических и технологических вузов республики, изучающих курс «Ограслевая экология». В нем изложена методика сравнительного анализа массы оксида углерода для двух типичных случаев сжигания топлина (полное сжигание топлина и неполное) в различных промышленных установках на основе экспериментальных и расчетных данных. Материал методического пособия соответствует программе курса «Отраслевая экология».

Предназначено для индивидуальной самостоятельной работы студентов.

Рецензент М И Пикитенко

Hens риботы:

Провести срявинтельный виялиз процентного содержания и массы оксилов углерода (СО) в пролуктах сторяния органического топлива при условии полного сторяния топлива ($\alpha > 1$) и пеполного сторяния ($\alpha < 1$).

1. ИСТОЧНИКИ ОБРАЗОВАНИЯ ОКСИДА УГЛЕРОДА

Оксил углерола, угарный газ (СО) - самая распространенная и наиболее значительная (по массе) токсичная примесь атмосферы СО представляет собой бесцветный, горючий высокотоксичный газ, не имеющий запаха, не взаимо-тействующий с водой, кислотами и щелочами.

Токсичность оксида углерода связана с его способностью реагировать с гемоглобином (красными кровяными тельцами) крови со скоростью, почти в 200 раз превышающей скорость связывания кислорода гемоглобином. В результате образуется карбоксигемоглобии, который уменьшает способность крови переносить кислород к тканям организма. При концентрации карбоксигемоглобина 10...80% наблюдается нарушение дыхания и легальный исход. Образование дарбоксигемоглобина в крови - процесс обратимый: после прекращения вдыхания СО начинается его постепенный выход из крови.

Естественными источниками поступления в атмосферу оксида углерода являются: вулканическая деятельность, некоторые виды брожения (придонные илы болот), электрические разряды в тропосфере, лесные пожары, а также океан, который производит около 5% общей массы оксида углерода.

Основная масса СО антропогенного происхождения образуется в процессе горения топлива в условиях недостатка кислорода (неполного сгорания): в двигателях внутреннего сгорания, в промышленных и бытовых топливоиспользующих установках, ТЭС, при сжигании промышленных отходов и т д.

Образование СО в процессе горения происходит по формуле

$$2C + O_2 \rightarrow 2CO + Q$$
.

При этом двигатели внутреннего сгорания являются главными источниками оксида углерода. Объем оксида углерода может достигать 10% объема выхлопных газов.

Ночти во всех процессах горения используется воздух, а не чистый кислород. Поскольку воздух представляет собой механическую смесь газов, можно рассчитать точное его количество, необходимое для сжигания конкретного топлива.

Количество воздуха, используемого в системе сжигания, зависит от количества кислорода, требуемого для полного сгорания, и от степени смещения. При идеальном смещении теоретическое отношение воздуха к топливу обеспечивает полное сгорание, однако смещение никогда не бывает идеальным и для полного сгорания гребуется избыточный воздух. При увеличении избыточного воздуха уменьшается количество несгоревшего топлива и увеличивается эффективность сгорания.

Оксид углерода образуется при горении топлива как с недостатком кислорода, так и при горении с избытком кислорода. Только в первом случае СО является конечным продуктом реакции горения, во втором – промежуточным.

Выбросы СО определяются организацией заключительной стадии горения – дожигания СО, важнейшими элементами которой янляются ввод вторичного воздуха и его смешение с продуктами сгорания.

2. ОПРЕДЕЛЕНИЕ МАССЫ ОКСИДА УГЛЕРОДА ПРИ СЖИГАНИИ ОРГАНИЧЕСКОГО ТОПЛИВА

2.1. Общие сведения

В общем виде уравнение сгорания органического топлива имеет вид

$$(C_0H_mO_0) + O_1 = (CO_2, H_2O_1, N_2) + Q.$$

Топливо + Кислород (воздух) = Продукты сгорания + Теплота

Горючее вещество топлив состоит в основном из трех элементов – углеродв, водорода и серы. Горение – это быстрое соединение кислорода с этими горючими элементами, сопровождающееся выделением теплоты.

Для большинства топлив важны только углерод и водород, так как содержание серы слишком мало, чтобы внести заметный вклад в выделение теплоты.

При сжигании органического топлива различают четыре типа горения:

- нейтральное полное сгорание топлива без избытка воздуха, коэффициент избытка воздуха $\alpha = 1$. Основными компонентами продуктов сгорания топлива являются диоксид углерода (CO₂), водяной пар (H₂O), азот (N₂);
- окислительное полное сгорание при небольшом избытке воздуха, $\alpha > 1,0$. В этом случае продукты сгорания в основном состоят из CO_2 , H_2O_1 , N_2 и O_3 ;
- восстановительное неполное сгорание при недостатке воздуха, α < 1,0. Продукты сгорания содержат СО, СО₂, Н₂О, Н₂, №. В этой группе наибольшее значение имеет оксид углерода СО;
- смешанное окнолительно-восстановительное, характерное для горения твердого топлива при неравномерном взаимодействии поверхностей его частиц с воздухом.

2.2. Определение массы оксида углерода

Масса выбросов оксида углерода (СО) определяется по уравнению

$$M_{\rm CO} = \frac{V_{\rm r} CO^{-} \rho V_{\rm roun}}{3600}$$
, r/c, (1)

где ρ - плотность CO ($\rho = 1.25 \text{ кг/м}^3$);

 $V_{e \in \Omega}$ - объем оксида углерода, определяемый по формуле

$$V_{\text{r.CO}} = \frac{Q}{Q_{\text{H.CO}}^{\text{p}}}, M^{3}/M^{3}; \qquad (2)$$

 $Q^{\rm p}_{\rm H,CO}$ - теплота сгорания оксида углерода ($Q^{\rm p}_{\rm H,CO}$ = 12675 кДж/м³);

Q - количество теплоты, расходуемое на образование СО:

$$Q = Q_{\rm h}^{\rm p} \quad \text{CO/100, } \kappa \text{Дж/м}^3; \tag{3}$$

СО - содержание оксида углерода в продуктах сгорания, %.

Расчет состава и количества продуктов сгорания топлива при $\alpha > 1$ и $\alpha < 1$ принципиально различается.

2.2.1. Определение процентного содержания оксида углерода при полном сжигании топлива

Процентное содержание СО в продуктах сгорания зависит от организации процесса (типа устройств, в которых он осуществляется) и величины коэффициента избытка воздуха α.

Содержание СО при α > 1 определяется по выражению

$$CO = \frac{21 - \beta RO_2 - (RO_2 + O_2)}{0.605 + \beta}, \%_{i_1}$$
 (4)

где RO_2 - оодержание трехатомных газов ($CO_2 + SO_2$) в продуктах сгорания, %; O_2 - содержание кислорода в продуктах сгорания, %;

 β - коэффициент, зависящий от состава топлива. Величину коэффициента β задают в исходных данных.

Величины RO_2 и O_2 определяют по данным газового анализа состава пролуктов сгорания.

2.2.2. Определение процентного содержания оксила утлерода при неполном сжигании топлива

Для определения процентного содержания СО в продуктах сгорания при неполном сжигании топлива (α <1) составляют систему уравнений, которая связывает объемы продуктов сгорания и-объемы компонентов топлива:

$$\sum (n^{\text{rip cr}} V_{C}^{\text{np cr}}) = \sum (n^{\text{total}} V_{C}^{\text{total}})$$

$$\sum (m^{\text{tip cr}} V_{H}^{\text{np cr}}) = \sum (m^{\text{total}} V_{C}^{\text{total}})$$

$$\sum (k^{\text{top cr}} V_{O}^{\text{np cr}}) = \sum (k^{\text{total}} V_{O}^{\text{total}}) + 2 \cdot 0.21\alpha V_{\text{teop}};$$

$$\frac{V_{CO_{2}}}{V_{CO_{2}}} = k_{1};$$

$$\frac{V_{H_{2}O}}{V_{H_{1}}} = k_{2}.$$
(5)

где $n^{\text{пр ст}}$, $m^{\text{пр ст}}$, $k^{\text{пр ст}}$ - коэффициенты при элементах C, H, O, входящих в состав продуктов сгорания;

 $V_{\rm C}^{\rm mp\,cr}$, $V_{\rm H}^{\rm mp\,cr}$, $V_{\rm O}^{\rm np\,cr}$ - объемы продуктов сторания, содержащих C, H и O. ${\rm M}^3/{\rm M}^3$:

поль, толь, ктоль - коэффициенты при элементах С, Н, О, содержащихся в химических соединениях, составляющих топливо (числовое значение коэффициентов равно числу атомов в молекуле химического соединения);

 $V_{\rm C}^{\rm np\,cr}$, $V_{\rm H}^{\rm np\,cr}$, $V_{\rm O}^{\rm np\,cr}$ - объемы компонентов топлива, содержащих С. Н. О. м³/м³:

 k_1 , k_2 - равновесные коэффициенты, определяемые в зависимости от α и $Q_{\rm R}^{\rm p}$ (рис.1).

Объем азота в продуктах сгорання определяют по формуле

$$V_{N_1} = 0.79 \cdot \alpha \cdot V_{\tau e \circ p} + V_{N_1}^{\tau \circ \alpha I}, M^3/M^3,$$
 (6)

где $V_{N_1}^{\text{torus}}$ - объем взота, содержащийся в топливе, м³/м³;

 V_{100p} - теоретически необходимое количество воздуха для сжигания \mathbf{m}^3 или кг топлива, $\mathbf{m}^3/\mathbf{m}^3$ или $\mathbf{m}^3/\mathbf{k}\Gamma$.

Решив систему уравнений (5) и определив V_{N_2} по формуле (6), находят суммарный объем продуктов сгорания ΣV_i ($\Sigma V_i = V_{CO_2} + V_{CO_2} + V_{H_2O} + V_{H_2} + V_{N_2}$) и вычисляют процентное содержание оксида углерода в продуктах сгорания:

$$CO = \frac{V_{CO}}{\Sigma V_i} \cdot 100, \%.$$

Дальнейший расчет массы выбросов оксида углерода проводят по формулам (1)...(3).

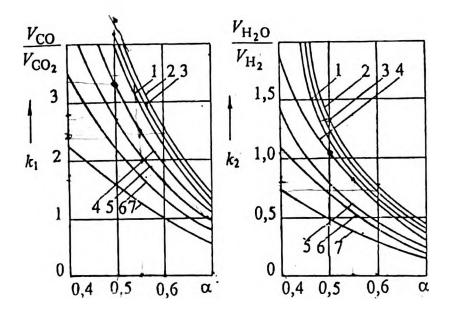


Рис.1. Грвфики для определения k_1 и k_2 .

1 — нефтяной газ ($Q_{\rm M}^{\rm p}=49440~{\rm кДж/m}^3$); 2 — природный газ ($Q_{\rm M}^{\rm p}=35700~{\rm кДж/m}^3$); 3 — природно-коксовый газ ($Q_{\rm M}^{\rm p}=30210~{\rm кДж/m}^3$);
— 4 — коксовый газ ($Q_{\rm M}^{\rm p}=17100~{\rm кДж/m}^3$); 5 — коксодоменный газ ($Q_{\rm M}^{\rm p}=12570~{\rm кДж/m}^3$); 6 — коксодоменный газ ($Q_{\rm M}^{\rm p}=10060~{\rm кДж/m}^3$); 7 — водяной газ ($Q_{\rm M}^{\rm p}=10220~{\rm кДж/m}^3$)

3. ДАННЫЕ ДЛЯ РАСЧЕТОВ

Вариант 1

Определить массу M (г/с) оксида углерода при сжигании природного газа в объеме $V_{\rm tens}=1000~{\rm m}^3/{\rm q}~(Q_{\rm H}^{\rm p}=35700~{\rm кДж/m}^3)$ в условиях полного сгорания токлива ($\alpha > 1$) и неполного сгорания ($\alpha < 1$).

1) α_1 = 1,2. При этом коэффициенте избытка воздуха методом газового анализа определено, что в продуктах сгорания содержится 13% RO₂ и 7,7% O₂. Коэффициент β = 0,01.

2) $\alpha_2 = 0.5$. Состав природного газа: CH₄ = 0.925 M^3/M^3 ; CO₂ = 0.005; H₂ = 0.019; CO = 0.003; O₂ = 0.006 it N₂ = 0.042 M^3/M^3 ; $V_{1000} = 9.35 M^3/M^3$.

Продукты сгорания природного газа: CO, CO2, H2O, H2, N2.

Пример составления системы уравнений (5).

Составляем уравнение для водорода.

Для компонентов продуктов сгорания, содержащих водород, занишем

$$\sum m^{\text{n.p.c.r}} V_{\text{H}}^{\text{n.p.c.r}} = 2 V_{\text{H,O}} + 2 V_{\text{H_2}} \; . \label{eq:self-mass}$$

Для компонентов топлива, содержащих водород, запишем

$$\sum m^{\text{TORR}} V_{\text{H}}^{\text{TORR}} = 4V_{\text{CH}_4} + 2V_{\text{H}_2} = 4.0,925 + 2.0,019 = 3,738 \,\text{m}^3/\text{m}^3.$$

Окончательно запишем

$$2V_{\rm H_2O} + 2V_{\rm H_2} = 3.738 \text{ m}^3/\text{m}^3.$$

Аналогичным образом составляют уравнения для О и С

По результатам расчета делаем внализ полученных данных и формулируем вывод.

Варивит 2

Определить массу M (1/c) оксида углерода при сжигании природного гвза в объеме $\Gamma_{\text{топа}} = 1000 \text{ м}^3/\text{ч} \; (Q_H^P = 35700 \text{ кДж/м}^3)$ в условиях полного сгорания топлива ($\alpha > 1$) и неполного сгорания ($\alpha < 1$).

1) α_1 = 1,15. При этом коэффициенте избытка воздуха методом газового анализа определено, что в продуктах сгорания содержится 12,9% RO₂ и 7,6% O₂. Коэффициент β = 0,01.

2) $\alpha_2 = 0.55$. Состав природного газа: $CH_4 = 0.925 \text{ м}^3/\text{M}^3$; $CO_2 = 0.005$; $H_2 = 0.019$; CO = 0.003; $O_2 = 0.006$ и $N_2 = 0.042 \text{ M}^3/\text{M}^3$; $V_{\text{твор}} = 9.35 \cdot \text{M}^3/\text{M}^3$.

Продукты сгорания природного газа: CO, CO_2, H_2O, H_2, N_3

Пример составления системы уравнений (5).

Составляем уравнение для водорода.

Для компонентов продуктов сгорания, содержащих водород, запишем

$$\sum m^{\Pi \text{ p.c r}} V_{\text{H}}^{\Pi \text{ p.c r}} = 2V_{\text{H,O}} + 2V_{\text{H,}}$$

Для компонентов топлива, содержащих водород, запишем

$$\sum m^{\text{tonn}} V_{\text{H}}^{\text{tonn}} = 4 V_{\text{CH}_4} + 2 V_{\text{H}_2} = 4 \cdot 0.925 + 2 \cdot 0.019 = 3,738 \text{ m}^3/\text{m}^3.$$

Окончательно запишем

$$2V_{\text{H}_2\text{O}} + 2V_{\text{H}_2} = 3.738 \text{ m}^3/\text{m}^3.$$

Анвлогичным образом составляют уравнения для О и С.

По результатам расчета делаем анализ полученных данных и формулируем вывод.

Вариянт 3

Определить массу M (г/с) оксида углерода при сжигании природного газа в объеме $V_{\rm rena} = 1000$ м³/ч ($Q_{\rm H}^{\rm p} = 35700$ кДж/м³) в условиях полного сгорания топлива ($\alpha > 1$) и неполного сгорания ($\alpha < 1$).

- 1) α_1 = 1,1. При этом коэффициенте избытка воздуха методом газового анализа определено, что в продуктах сгорания содержится 12,8% RO₂ и 7,5% O₂. Коэффициент β = 0,01.
- 2) $\alpha_2 = 0.6$ Состав природного газа: $CH_4 = 0.925 \text{ m}^3/\text{m}^3$; $CO_2 = 0.005$; $H_2 = 0.019$; CO = 0.003; $O_2 = 0.006$ и $N_2 = 0.042 \text{ m}^3/\text{m}^3$; $V_{reso} = 9.35 \text{ m}^3/\text{m}^3$.

Продукты сгорания природного газа: СО, СО2, Н2О, Н2, N2.

Пример составления системы уравнений (5).

Составляем уравнение для водорода.

Для компонентов продуктов сгорания, содержащих водород, запишем

$$\sum m^{\text{II p.c r}} V_{\text{H}}^{\text{II p.c r}} = 2V_{\text{H}_2\text{O}} + 2V_{\text{H}_2}$$
.

Для компонентов топлива, содержащих водород, запишем

$$\sum m^{\text{TORR}} V_{\text{H}}^{\text{TORR}} = 4 V_{\text{CH}_4} + 2 V_{\text{H}_2} = 4.0,925 + 2.0,019 = 3,738 \text{ m}^3/\text{m}^3.$$

Окончательно запишем

$$2V_{\rm H,O} + 2V_{\rm H_2} = 3,738 \,\mathrm{m}^3/\mathrm{m}^3.$$

Аналогичным образом составляют уравнения для О и С.

По результатам расчета деляем анализ полученных данных и формулируем вывод.

Варнант 4

Определить мяссу M (г/с) оксидя углерода при сжигании коксового газа в объеме $V_{\rm rens} = 2090$ м 3 /ч ($Q_{\rm H}^{\rm p} = 17100$ кДж/м 3) в условиях полного сгорания топлива ($\alpha > 1$) и неполного сгорания ($\alpha < 1$).

- 1) $\alpha_1 \approx 1,2$. При этом коэффициенте избытка воздуха методом газового внализа определено, что в продуктах сгорания содержится 13,05% RO₂ и 7,68% O₃. Коэффициент $\beta = 0,01$.
- 2) $\alpha_1 = 0.5$. Coctab kokcoboro rasa: CH₄ = 0.266 m³/m³; CO₂ = 0.02, H₁ = 0.555; CO = 0.064; O₂ = 0.008; N₂ = 0.064 H H₂O = 0.023 m³/m³; $V_{\text{teep}} = 4.06 \text{ m}^3/\text{m}^3$.

Продукты сгорания коксового газа: СО, СО2, Н2О, Н2, №2.

Пример составления системы уравнений (5).

Составляем уравнение для водорода.

Для компонентов продуктов сгорания, содержащих водород, запишем

$$\sum m^{\text{II p.c r}} V_{\text{H}}^{\text{n p.c r}} = 2V_{\text{H}_2\text{O}} + 2V_{\text{H}_2}$$
.

Для компонентов топлива, содержащих водород, запишем

$$\sum m^{\text{Total}} V_{11}^{\text{Total}} = 4V_{\text{CH}_4} + 2V_{\text{H}_2} + 2V_{\text{H}_20} = 4.0,266 + 2.0,555 + 2.0,023 = 2,22 \text{ M}^3/\text{M}^3$$

Окончательно запишем

$$2V_{\text{H}_2\text{O}} + 2V_{\text{H}_2} = 2,22 \text{ m}^3/\text{m}^3.$$

Аналогичным образом составляют уравнения для О и С.

По результатям расчета делаем анализ полученных данных и формулируем вывод.

Вариянт 5

Определить массу M (г/с) оксида углерода при сжигании коксового газа в объеме $V_{\rm sens}=2090$ м $^3/4$ ($Q_{\rm H}^{\rm P}=17100$ кДж/м 3) в условнях полного сгорания топлива ($\alpha > 1$) и неполного сгорания ($\alpha < 1$).

1) α_1 = 1,15. При этом коэффициенте избытка воздуха методом газового внализа определено, что в продуктах сгорания содержится 12,95% RO₂ и 7,65% O₂. Коэффициент β = 0,01.

2) $\alpha_2 = 0.55$. Coctab kokcoboro rasa: CH₄ = 0.266 m³/m³; CO₂ = 0.02; H₂ = 0.555; CO = 0.064; O₂ = 0.008; N₂ = 0.064 H H₂O = 0.023 m³/m³; $V_{\text{rep}} = 4.06 \text{ m}^3/\text{m}^3$.

Продукты сгорания коксового газа: СО, СО2, Н2О, Н2, N2.

Пример составления системы уравнений (5).

Составляем уравнение для водорода.

Для компонентов продуктов сгорания, содержащих водород, запишем

$$\sum m^{\text{n.p.c.r}} V_{\text{H}}^{\text{n.p.c.r}} = 2V_{\text{H}_2\text{O}} + 2V_{\text{H}_2}$$
.

Для компонентов топлива, содержащих водород, запишем

$$\sum m^{\text{tons}} V_{\text{H}}^{\text{1ons}} = 4V_{\text{CH}_4} + 2V_{\text{H}_3} + 2V_{\text{H}_2} = 4 \cdot 0.266 + 2 \cdot 0.555 + 2 \cdot 0.023 = 2.22 \text{ m}^3/\text{m}^3.$$

Окончательно запишем

$$2V_{\text{H}_2\text{O}} + 2V_{\text{H}_2} = 2.22 \text{ m}^3/\text{m}^3.$$

Аналогичным образом составляют уравнения для О и С.

По результатам расчета делаем анализ полученных данных и формулируем вывод.

Вариант 6

Определить массу M (г/с) оксида углерода при сжигании коксодоменного газа в объеме $V_{\rm tens} = 2840 \, {\rm m}^3/{\rm q} \; (Q_{\rm H}^{\rm p} = 12570 \, {\rm к/J}_{\rm k}/{\rm m}^3)$ в условиях полного сгорания топлива ($\alpha > 1$) и неполного сгорания ($\alpha < 1$).

1) α_1 = 1,2. При этом коэффициенте избытка воздуха методом газового внализа определено, что в продуктах сторания содержится 13,02% RO₂ и 7,6% O₂. Коэффициент β = 0,01.

2) $\alpha_2 = 0.5$. Состав коксодоменного газа: $CH_4 = 0.164 \text{ m}^3/\text{m}^3$; $C_1H_4 = 0.013$; $CO_2 = 0.054$; $H_1 = 0.376$, CO = 0.132; $O_2 = 0.005$; $N_1 = 0.233 \text{ H H}_1O = 0.023 \text{ m}^3/\text{m}^3$; $V_{\text{teop}} = 2.93 \text{ m}^3/\text{m}^3$.

Продукты сгорания коксодоменного газа: СО, СО, НаО, На, №.

Пример составления системы уравнений (5).

Составляем уравнение для водородв.

Для компонентов продуктов сгорания, содержащих водород, запишем

$$\sum m^{H \mu c r} V_{H}^{H \mu c r} = 2V_{H_2O} + 2V_{H_2}$$

Для компонентов топлива, содержащих водород, запишем

$$\sum m^{\text{total}} V_{\text{H}}^{\text{total}} = 4V_{\text{CH}_4} + 6V_{C_2\text{H}_4} + 2V_{\text{H}_3} + 2V_{\text{H}_3\text{O}} =$$

$$= 4.0,164 + 6.0,013 + 2.0,376 + 2.0,023 = 1,532 \text{ m}^3/\text{m}^3.$$

Окончательно запишем

$$2V_{11_2O} + 2V_{11_2} = 1,532 \text{ m}^3/\text{m}^3.$$

Аналогичным образом составляют уравнения для О и С.

По результатам расчета делаем вналит полученных данных и формулируем вывод.

Вариант 7

Определить массу M (г/с) оксида углерода при сжигании коксодоменного газа в объеме $V_{\rm max}$ = 2840 м³/ч ($Q_{\rm H}^{\rm p}$ = 12570 к/Јж/м³) в условиях полного сгорания топлива ($\alpha > 1$) и неполного сгорания.($\alpha < 1$).

1) α_1 = 1,15. При этом коэффициенте избытка воздуха методом газового внализа определено, что в продуктах сгорания содержится 12,99% RO₂ и 7,67% O₂. Коэффициент β = 0,01.

2) $\alpha_1 = 0.55$. Состав коксодоменного газа: $CH_4 = 0.164 \text{ м}^3/\text{м}^3$; $C_2H_6 = 0.013$; $CO_1 = 0.054$; $H_2 = 0.376$; CO = 0.132; $O_2 = 0.005$; $N_2 = 0.233 \text{ H H}_2O = 0.023 \text{ M}^3/\text{M}^3$; $V_{\text{max}} = 2.93 \text{ M}^3/\text{M}^3$.

Продукты сгорания коксодоменного газа: СО, СО2, Н2О, Н2, №2.

Пример составления системы уравнений (5).

Составляем уравнение для водорода.

Для компонентов продуктов сгорания, содержащих водород, запишем

$$\sum m^{\text{n p.c r}} V_{\text{H}}^{\text{n p.c r}} = 2V_{\text{H},\text{O}} + 2V_{\text{H}_{1}}$$

Для компонентов топлива, содержащих водород, запишем

$$\sum m^{\text{tonn}} V_{\text{H}}^{\text{Tonn}} = 4V_{\text{CH}_4} + 6V_{\text{C}_3\text{H}_4} + 2V_{\text{H}_2} + 2V_{\text{H}_2} =$$

$$= 4.0,164 + 6.0,013 + 2.0,376 + 2.0,023 = 1,532 \,\text{m}^3/\text{m}^3.$$

Окончательно запишем

$$2V_{\rm H_2O} + 2V_{\rm H_2} = 1.532 \,\mathrm{m}^3/\mathrm{m}^3.$$

Аналогичным образом составляют уравнения для О и С.

По результатам расчета делаем анализ полученных данных и формулируем вывод.

Вариант 8

Определить массу M (г/с) оксида углерода при сжигании природиококсового газа в объеме $V_{\rm rens}=1185~{\rm m}^3/{\rm q}~(Q_{\rm H}^{\rm p}=30210~{\rm к/Дж/m}^3)$ в условиях полного сгоряния топлива ($\alpha > 1$) и неполного сгорания ($\alpha < 1$).

1) $\alpha_1 = 1,2$. При этом коэффициенте избытка воздуха методом газового внализа определено, что в продуктах сгорания содержится 13,2% RO₂ и 7,3% O₂. Коэффициент $\beta = 0.01$.

2) $\alpha_3 = 0.5$. Состав природно-коксового газа: $CH_4 = 0.783 \text{ m}^3/\text{m}^3$; $C_2H_4 = 0.005$; $CO_2 = 0.007$; $H_2 = 0.136$; CO = 0.019; $O_3 = 0.005$; $N_3 = 0.04 \text{ m}$: $H_2O = 0.005 \text{ m}^3/\text{m}^3$; $V_{\text{tesp}} = 7.86 \text{ m}^3/\text{m}^3$.

Продукты сгорания природно-коксового газа: СО, СО, Н,О, Н, N,

Пример составления системы уравнений (5).

Составляем уравнение для водорода.

Для компонентов продуктов сгорания, содержащих водород, запишем

$$\sum m^{\pi \, p \, c \, r} V_{\rm H}^{\pi \, p \, c \, r} = 2 V_{\rm H_2O} + 2 V_{\rm H_2} \; . \label{eq:section_hamiltonian}$$

Для компонентов топлива, содержащих водород, запишем

$$\sum m^{\text{total}} V_{\text{M}}^{\text{total}} = 4V_{\text{CH}_4} + 6V_{\text{C}_2\text{H}_6} + 2V_{\text{H}_2} + 2V_{\text{H}_2\text{O}} =$$

$$= 4.0,783 + 6.0,005 + 2.0,136 + 2.0,005 = 3,444 \,\text{m}^3/\text{m}^3.$$

Окончательно запишем

$$2V_{\rm H_2O} + 2V_{\rm H_2} = 3.444 \, \rm m^3/m^3.$$

Аналогичным образом составляют уравнения для О и С.

По результатам расчета делаем внализ полученных данных и формулируем вывод.

Варнант 9

Определить массу M (г/с) оксида углерода при сжигании природнококсового газа в объеме $V_{\rm max}=1185~{\rm m}^3/{\rm q}~(Q_{\rm H}^{\rm p}=30210~{\rm к, T; m/m}^3)$ в условиях полного сгорания топлива ($\alpha > 1$) и неполного сгорания ($\alpha < 1$).

- 1) α_1 = 1,15. При этом коэффициенте избытка воздуха методом газового анализа определено, что в продуктах сгорания содержится 13,19% RO₂ и 7,15% O₂. Коэффициент β = 0,01.
- 2) $\alpha_1 = 0.55$. Состав природно-коксового газа. $CH_4 = 0.783 \text{ м}^3/\text{м}^3$. $C_2H_6 = 0.005$; $CO_2 = 0.007$; $H_2 = 0.136$; CO = 0.019; $O_2 = 0.005$; $N_2 = 0.04 \text{ H}$. $H_2O = 0.005 \text{ м}^3/\text{м}^3$; $V_{\text{ress}} = 7.86 \text{ m}^3/\text{м}^3$.

Продукты сторания природно-коксового газа: СО, СО2, Н2О, Н2, N2.

Пример составления системы уравнений (5).

Составляем уравнение для водорода.

Для компонентов продуктов сгорания, содержащих водород, запишем

$$\sum m^{\text{npcr}} V_{\text{H}}^{\text{np.cr}} = 2V_{\text{H}_2\text{O}} + 2V_{\text{H}_2}$$
.

Для компонентов топлива, содержащих водород, запишем

$$\sum m^{\text{TORM}} V_{\text{H}}^{\text{TORM}} = 4V_{\text{CH}_4} + 6V_{\text{C}_2\text{H}_6} + 2V_{\text{H}_2} + 2V_{\text{H}_2\text{O}} =$$

$$= 4.0.783 + 6.0.005 + 2.0.136 + 2.0.005 = 3.444 \,\text{m}^3/\text{m}^3.$$

Окончательно запишем

$$2V_{\rm H_2O} + 2V_{\rm H_2} = 3.444 \, \rm m^3/m^3$$
.

Аналогичным образом составляют уравнения для О и С.

По результатам расчета делаем анализ полученных данных и формулируем вывод.

Нариант 10

Определить миссу M (г/с) оксиди углероди при сжигании природнококсового газа в объеме $V_{\rm tota}=1185~{\rm m}^3/{\rm q}~(Q_{\rm H}^{\rm p}=30210~{\rm кДж/m}^3)$ в условиих полного сгорания топлива ($\alpha > 1$) и неполного сгорания ($\alpha < 1$).

1) $\alpha_1 = 1,1$. При этом коэффициенте избытка воздуха методом назового внализв определено, что в продуктах сгорания содержится 13,15% RO₂ и 7,06% O₂. Коэффициент $\beta = 0,01$.

2) $\alpha_2 = 0.6$. Состав природно-коксового газа: $CH_4 = 0.783 \text{ m}^3/\text{m}^3$; $C_1H_6 = 0.005$; $CO_2 = 0.007$; $H_2 = 0.136$; CO = 0.019; $O_3 = 0.005$; $N_2 = 0.04 \text{ m}$ $H_2O = 0.005 \text{ m}^3/\text{m}^3$; $V_{\text{total}} = 7.86 \text{ m}^3/\text{m}^3$.

Продукты сгорания природно-коксового газа: CO, CO₁, H_2O , H_2 , N_2 .

Пример составления системы уравнений (5).

Составляем уравнение для водорода.

Для компонентов продуктов сгорания, содержащих водород, запишем

$$\sum_{n=0}^{\infty} m^{n p.c r} V_{H_1}^{n p.c r} = 2V_{H_2O} + 2V_{H_2}$$

Для компонентов топлива, содержащих водород, запишем

$$\sum m^{\text{rona}} V_{\text{M}}^{\text{rona}} = 4V_{\text{CH}_4} + 6V_{\text{C}_2\text{H}_4} + 2V_{\text{H}_2} + 2V_{\text{H}_2\text{O}} =$$

$$= 4.0,783 + 6.0,005 + 2.0,136 + 2.0,005 = 3,444 \,\text{m}^3/\text{m}^3.$$

Окончательно запишем

$$2V_{\rm H_2O} + 2V_{\rm H_2} = 3.444 \,\mathrm{m}^3/\mathrm{m}^3.$$

Аналогичным образом составляют уравнения для О и С.

По результатам расчета деляем внализ полученных данных и формулируем вывод.

Контрольные вопросы

- 1. Источники образования оксида углерода.
- 2. Токсическое воздействие оксида углерода на организм человека.
- 3. Полное и неполное сгорание топлива.
- 4. Состав продуктов сгорания органического топлива.
- 5. Пути снижения выбросов оксида углерода при сжигании топлива.

Литература

- 1. Несенчук А.П., Жмакин Н.П. Тепловые расчеты пламенных печей для нагрева и термообработки металла-Ми.: Выш.школа, 1974.
- 2. Тищенко Н.Ф. Охрана атмосферного воздуха. Расчет содержания вредных веществ и их распределение в воздухе: Справочник. М.: Химия, 1991.
- 3. Владимиров А.М., Ляхин Ю.И., Матвеев Л.Т., Орлов В.Г. Охрана окружающей среды. - Л.:Гидрометеоиздат, 1991.

Содержание

Пель работы	3
1. ИСТОЧНИКИ ОБРАЗОВАНИЯ ОКСИДА УГЛЕРОДА	3
2. ОПРЕДЕЛЕНИЕ МАССЫ ОКСИДА УГЛЕРОДА ПРИ	
СЖИГАНИИ ОРГАНИЧЕСКОГО ТОПЛИВА	5
2.1. Общие сведения	5
2.2. Определение массы оксида углерода	6
2.2.1. Определение процентного содержания оксида	
углерода при полном сжигании топлива	6
2.2.2. Определение процентного содержания оксида	
углерода при неполном сжигании топлива	7
3. ДАННЫЕ ДЛЯ РАСЧЕТОВ	10
Контрольные вопросы	20
Литература	20

Учебное издание

ТРУСОВА Ирина Александровна МАЛЬКЕВИЧ Наталья Геннальский

ОПРЕДЕЛЕНИЕ МАССЫ ОКСИДА УГЛЕРОДА ПРИ СЖИГАНИЯ ОРГАНИЧЕСКОГО ТОПЛИВА

Методическое пособие по курсу «Отраслевая экология» для студентов всех специальностей

Редактор Н.А.Школьникова

Полнисано в печать 10.12.99.

Формат 60х84 1/16. Бумага тип. №2. Офсет. печать Усл. печ. л. 1,2. Уч.-изд. л. 0,9. Тираж і 20. Зак. 660

Издатель и полиграфическое исполнение: Белорусская государственная политехническая акалемия.

Лицензия ЛВ №155 от 30.01.98, 220027, Минск, пр Ф.Скорины, 65.