Созданный опытный образец комплекса находится в Научно-исследовательском центре оптических материалов и технологий БНТУ.

- Thermal lensing in Er,Yb:YVO₄ crystal / P. Loiko, et al. // Laser Phys. Lett. – 2015. – Vol. 12. – P. 035001-1–5.
- 2. Thermo-optic characterization of Yb:CaGdAlO₄ laser crystal / Loiko, et al. // Opt. Mater. Express. 2014. Vol. 4. P. 2241–2249.
- 3. Anisotropy of the photo-elastic effect in Nd:KGd(WO₄)₂ laser crystals / P.A. Loiko, et al. // Laser Phys. Lett. 2014. V. 11. P. 1–7.

УДК 621.317: 681.518

ИЗМЕРИТЕЛЬНЫЙ АППАРАТНО-ПРОГРАММНЫЙ КОМПЛЕКС ДЛЯ ЛАБОРАТОРНЫХ ПРАКТИКУМОВ ПО РАДИОЭЛЕКТРОНИКЕ

Здоровцев С.В. 1, Курочкин А.Е. 2, Кухаренко Н.А. 1, Кушнеров Д.П. 1, Листопад Н.И. 2 OAO «МНИПИ»

Минск, Республика Беларусь ²Белорусский государственный университет информатики и радиоэлектроники Минск, Республика Беларусь

Создание максимально гибких многофункциональных измерительных приборов и систем является актуальной научно-технической задачей
при подготовке технических специалистов различных образовательных уровней. Решение данной задачи в каждом конкретном случае базируется, как правило, на научно-техническом заделе, имеющемся в той или иной области знаний.
При этом универсальность системы обеспечивается с одной стороны – программными возможностями используемых вычислительных средств
– персональных компьютеров (ПК), с другой –
функциональной гибкостью технологической
подсистемы [1].

Сами себе ПК не могут обеспечить универсальность системы на технологическом уровне то есть на уровне выполняемых технологических операций и процессов. Основное их назначение обеспечение, прежде всего, информационной гибкости систем, - то есть гибкость на уровне приема и обработки информации от самых различных источников (датчиков) и выдачи соответствующих управляющих и информационных сигналов на самые различные приемники подсистемы и т.д. [2]. Для обеспечения же максимальной функциональной гибкости технологической подсистемы непосредственно на уровне технологических операций и процессов, функциональные элементы и устройства должны отвечать определенным схемо- и системотехническим требованиям, которые формулируются и реализуются в соответствии со спектром решаемых

Для постановки современных учебных лабораторных практикумов наиболее целесообразным является их реализация в виде аппаратнопрограммных комплексов, которые позволяют исследовать реальные физические объекты и функциональные узлы. В этом случае имеется возможность использовать в работе элементы

реального и виртуального взаимодействия с лабораторным оборудованием. При этом основными объектами исследования являются учебные лабораторные модули (УЛМ), а измерительное оборудование может быть, как реальным, обеспечивающим непосредственную связь с ПК через интерфейс, так и виртуальным, полностью управляемым ПК.

Объединение аппаратно-программных средств измерения и обработки измерительной информации с учебными лабораторными модулями представляет собой измерительный аппаратно-программный комплекс, предназначенный для выполнения учебных лабораторных практикумов по радиоэлектронным дисциплинам (УАПК)

Основными составными узлами УАПК являются функциональные УЛМ и информационноизмерительная система (ИИС), включающая блок управления (БУ), блок измерения (БИ), блок обработки измерительной информации на базе ПК.

УЛМ могут иметь различную структуру и техническое исполнение в зависимости от многообразия решаемых задач. УЛМ подразделяются на изучаемые дисциплины и на лабораторные практикумы в составе этих дисциплин. Основным условием реализации УЛМ в составе ИАПК является их совместимость с ИИС.

Разработанная ИИС структурно состоит из трех функциональных групп. Первая группа включает радиоэлектронные модули первичной обработки информации. Вторая группа ИИС представляет собой блок измерительный (БИ), включающий комплект интеллектуальных измерительных USB-приборов с соответствующим программным обеспечением. Третья группа представляет собой блок управления (БУ) и информационный блок, включающий математическое, алгоритмическое и программное обеспе-

чения системы на основе персонального компьютера (ПК). Первая и третья группы могут видоизменяется в зависимости от способа контроля параметров и функционального назначения ИИС. Структурная схема рассматриваемой ИИС представлена на рисунке 1.

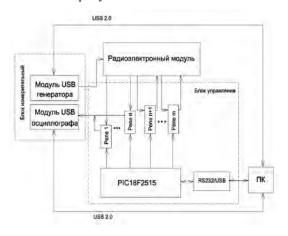


Рисунок 1 – Структурная схема ИИС

Измерительный блок построен на базе двух модулей: функционального *USB*-генератора игналов и двухканального цифрового *USB*-осциллографа. Такой выбор обусловлен широкими возможностями интеллектуальных измерительных *USB*-приборов, использующих постоянно увеличивающиеся вычислительные возможности и гибкость ПК.

Основными особенностями построения БИ на базе измерительных *USB*-приборов являются:

- широкие возможности представления и обработки измерительной информации;
 - настраиваемый интерфейс пользователя;
 - расширяемость;
- запись времени и комментариев вместе с данными;
 - автоматизация процесса измерений;
- встроенные в измерительные процедуры возможности мультимедиа;
- взаимодействие с базами данных и информационными системами.

Использование автоматизированных средств разработки прикладных приложений, например, LabVIEW или LabWindows/CVI, делает простым процесс создания как специализированных устройств, так и универсальных, комбинирующих возможности нескольких приборов.

При разработке программной части компьютерной информационно-измерительной системы были использованы следующие виртуальные инструменты *LabVIEW*:

Interpolate 1D .VI – программный интерполятор;

Harmonic Distortion Analyzer.VI – измеритель нелинейных искажений;

Measure for 1chan(SubVI).VI - измеритель

параметров сигнала;

Basic Averaged DC-RMS. VI – измеритель постоянного напряжения;

Square Function. VI – формирователь прямоугольного импульса.

Для функционирования ИИС разработан протокол информационного взаимодействия узлов и подсистем и организована синхронизация процессов измерений различных параметров УРМ. В среде *LabVIEW* реализовано управление *USB*-измерительными модулями (генератор сигналов, цифровой осциллограф), а также управление как отдельными функциональными узлами ИИС, так и УАПК в целом.

Графический интерфейс пользователя реализован в виде графических образов панелей управления приборов. На рисунке 2 показан пример ра бочего окна информационного дисплея в одном из режимов работы ИИС при измерении парамет-ров УЛМ. В представленном рабочем окне отображается анализируемая электрическая схема УЛМ, виртуальные панели измерительных приборов, параметры и характеристики исследуемого модуля в выбранном режиме ИИС.

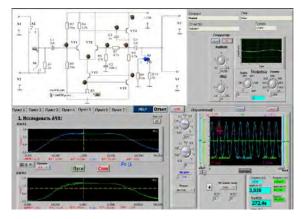


Рисунок 2 – Рабочее окно информационного дисплея в одном из режимов работы ИИС

Рисунок 3 — Измерительный аппаратно-программный комплекс для лабораторных практикумов по радиоэлектронике

На рисунке 3 показан один из вариантов разработанного учебного измерительного аппаратно-программного комплекса на базе ПК.

Разработанный учебный аппаратнопрограммный комплекс представляет интерес при решения измерительных задач, требующих автоматизации процессов измерения, хранения, анализа измерительной информации, а также для реализации инновационных методов подготовки технических специалистов различного уровня на основе интеллектуальных аппаратно-программных средств в соответствии с современными образовательными программами.

- 1. Денисенко В.В. Компьютерное управление технологическим процессом, экспериментом, оборудованием/ В.В. Денисенко. Москва: Горячая линия-Телеком. – 2009. – 608 с.
- 2. Крюков В.В. Информационно-измерительные системы/ В.В. Крюков. Владивосток: ВГУЭС. −2000. − 102 c.
- 3. Раннев Г.Г. Интеллектуальные средства измерений: учебник для студ. высш. учеб. заведений. -Москва: Издательский центр «Академия». – 2010. – 272 с.

УДК 621.039:004.415.2.041

АЛГОРИТМ И КОНФИГУРАЦИЯ СИСТЕМЫ АКУСТИЧЕСКОГО МУЛЬТИСЕНСОРНОГО КОНТРОЛЯ НЕШТАТНЫХ СОСТОЯНИЙ ОПАСНЫХ ПРОИЗВОДСТВ

Иванов В.И., Иванов Н.И., Лазарчик А.Н.

Институт ядерных проблем Белорусского Государственного Университета Минск, Республика Беларусь

Методы бесконтактной акустической шумовой диагностики (БАШД) основываются на анализе множества сигналов, получаемых с помощью распределенных в контролируемом пространстве N акустических сенсоров.

Предлагаемый алгоритм БАШД реакторных и турбинных залов и ряда других опасных производств включает: предварительное получение «паспорта» трехмерной акустической шумовой обстановки контролируемого объекта путем измерения базовых (эталонных) сигнатур акустической шумовой обстановки (БСШО) в режиме штатного функционирования объекта; получение текущих сигнатур акустической обстановки (ТСШО) и их текущее сравнение с БСШО в заданных точках контролируемого пространства с последующим выявлением и определением координат позиционирования источника аномального шума, рисунок 1.

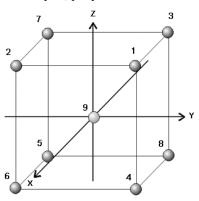


Рисунок 1 – Схема расположения акустических сенсоров БАШД в трехмерном пространстве

Выявление аномального шума, порожденного различными нештатными ситуациями - утечками из напорных трубопроводов, различного рода биениями и вибрациями, повышенным трением в узлах вращения, разрушением элементов конструкций, попаданием посторонних предметов в меха-низмы и трубопроводы, электрическими разря-дами и замыканиями, осуществляется по признакам отличия стационарности акустических сигнатур БСШО и ТСШО по следующим параметрам:

$$K_1 = \frac{F_{max} - \bar{F}}{F_{max}}, \qquad (1)$$

$$K_2 = 1 - \frac{F_{mod}}{F_{max}}, \qquad (2)$$

$$K_2 = 1 - \frac{F_{mod}}{F_{max}} \,, \tag{2}$$

где F_{max} — максимальная частота спектра сигнала; \bar{F} – среднее значение частоты, представляет собой амплитудно-взвешенное значение частоты спектра на периоде усреднения T; F_{mod} модальная частота, определяемая интервалом частот спектра, в котором сосредоточена наибольшая доля энергии сигнала.

Оптимизация системы БАШД потребовала разработки эффективных алгоритмов анализа и минимизации погрешностей определения координат позиционирования источника аномального шума в трехмерном пространстве при минимизации числа используемых датчиков системы и вычислений. Набор пар из N датчиков, рисунок 1, определяет систему нелинейных гиперболиче-ских уравнений относительно координат позиционирования источника аномального шума.