К ИССЛЕДОВАНИЮ ВЛИЯНИЯ ПАРАМЕТРА ЛОДЕ В ОСЕСИММЕТРИЧНОЙ ЗАДАЧЕ ТЕОРИИ ИДЕАЛЬНОЙ ПЛАСТИЧНОСТИ

Горский А.В., Горский П.В.

В работе исследуется влияние параметра Лоде на напряженное состояние на примере осесимметричной задачи вдавливания кругового штампа при переходе от условия неполной пластичности к условию полной пластичности.

1. Напряженное состояние тела может быть определено значениями главных напряжений σ_i , причем

$$\sigma_1 \ge \sigma_2 \ge \sigma_3. \tag{1}$$

Следуя [1], введем инвариантные характеристики напряженного состояния: σ_n , T, μ_{σ}

$$\sigma_n = \frac{\sigma_1 + \sigma_3}{2}, \quad T = \frac{\sigma_1 - \sigma_3}{2}, \quad \mu_\sigma = \frac{2\sigma_2 - (\sigma_1 + \sigma_3)}{\sigma_1 - \sigma_3} = \frac{\sigma_2 - \sigma_n}{T}.$$
 (2)

Из (2) будем иметь

$$\sigma_1 = \sigma_n + T$$
, $\sigma_2 = \sigma_n + \mu_\sigma T$, $\sigma_3 = \sigma_n - T$, $-1 \le \mu_\sigma \le 1$. (3)

Условия полной пластичности имеет место при $\mu_{\sigma} = \mp 1$.

Взаимная ориентация координатных осей x, y, z и главных направлений 1, 2, 3 тензора напряжений определяется таблицей направляющих косинусов таблица 1 [2]:

	Таблица 1		
	1	2	3
x	l_1	m_1	n_1
у	l_2	m_2	n_2
Z	l_3	m_3	n_3

Для l_i , m_i , n_i имеет место

$$l_i l_i + m_i m_i + n_i n_i = \delta_{ii} , \qquad (4)$$

где δ_{ii} – символ Кронекера,

ИЛИ

$$l_1^2 + l_2^2 + l_2^2 = 1, (lmn)$$

$$l_1 m_1 + l_2 m_2 + l_3 m_3 = 0.$$
 (5)

Соотношения связи между компонентами напряжений σ_{ij} и главными напряжениями σ_1 , σ_2 , σ_3 определяются по формулам:

$$\sigma_{\rho} = \sigma_1 l_1^2 + \sigma_2 m_1^2 + \sigma_3 n_1^2, (\rho \theta z, 123)$$

$$\tau_{\rho\theta} = \sigma_1 l_1 l_2 + \sigma_2 m_1 m_2 + \sigma_3 n_1 n_2,$$
(6)

где l_i , m_i , n_i — направляющие косинусы. Символ (xyz) означает, что недостающие выражения получаются круговой перестановкой индексов.

Положим.

$$l_1 = \cos \varphi, \ l_2 = 0, \ l_3 = \sin \varphi, \ m_1 = m_3 = 0, \ m_2 = 1.$$
 (7)

Из (2)-(7) получим:

$$\sigma_{\rho} = \sigma_n - T\cos 2\varphi$$
, $\sigma_{\theta} = \sigma_n + \mu_{\sigma}T = \sigma_2$,

$$\sigma_{z} = \sigma_{n} + T\cos 2\varphi , \quad \tau_{\rho z} = -T\sin 2\varphi ,$$

$$\tau_{\rho\theta} = \tau_{\theta z} = 0 , \quad \sigma = \sigma_{1} - T(1 + \mu_{\sigma}/3) = \sigma_{n} + \mu_{\sigma}T/3 .$$

$$tg2\varphi = \frac{2\tau_{\rho z}}{\sigma_{\rho} - \sigma_{z}} .$$
(8)

Уравнения равновесия в осесимметричном случае:

$$\frac{\partial \sigma_{\rho}}{\partial \rho} + \frac{\partial \tau_{\rho z}}{\partial z} + \frac{\sigma_{\rho} - \sigma_{\theta}}{\rho} = 0,$$

$$\frac{\partial \tau_{\rho z}}{\partial \rho} + \frac{\partial \sigma_{\theta}}{\partial z} + \frac{\tau_{\rho z}}{\rho} = 0.$$
(9)

Напряженное состояние определяется двумя семействами характеристик:

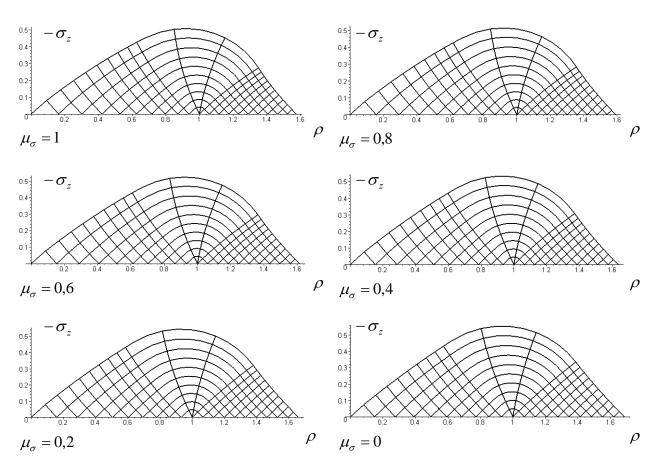
$$\left(\frac{dz}{d\rho}\right)_{\alpha,\beta} = \operatorname{tg}\left(\varphi \mp \frac{\pi}{4}\right),\tag{10}$$

и дифференциальные соотношения вдоль них

$$d\sigma_n \mp 2Td\varphi + \frac{T}{\rho} \left(\mu_\sigma + \cos 2\varphi + \sin 2\varphi \left(\frac{dz}{d\rho} \right)_{\alpha,\beta} \right) d\rho = 0.$$
 (11)

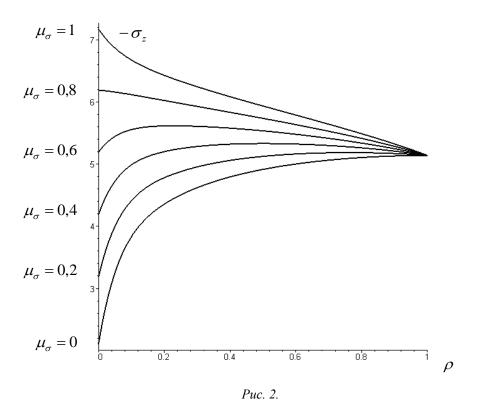
При μ_{σ} = 1 соотношения (10), (11) переходят в соотношения для осесимметричной задачи при условии полной пластичности, приведенные в [2, 3].

Ниже приведены графики для μ_{σ} = 0; 0,2; 0,4; 0,6; 0,8; 1 .



Puc. 1.

Согласно результатам, полученным численными расчетами (рис. 1), определяется незначительный рост величины свободной границы пластической зоны с уменьшением значения параметра Лоде μ_{σ} .



Из графиков распределения нормального давления σ_z под штампом, приведенных на рис. 2, видно, что максимум предельной нагрузки достигается при условии полной пластичности $\mu_\sigma=1$.

ЛИТЕРАТУРА

- 1. Христианович С.А., Шемякин Е.И. К теории идеальной пластичности // Изв. АН СССР, Мех. тв. тела. 1967. №5.
- 2. Ишлинский А.Ю., Ивлев Д.Д. Математическая теория пластичности. М.: Физматлит, 2001. 704 с.
- 3. Горский П.В. О вдавливании кольцевого штампа в неоднородное пластическое полупространство при действии контактного касательного напряжения // Вестник ЧГПУ им. И.Я. Яковлева. -2005. -№ 1 (43). С. 39-44.