ТРЕЩИНООБРАЗОВАНИЕ В ПРЕДНАПРЯЖЁННЫХ ЖЕЛЕЗНОДОРОЖНЫХ ШПАЛАХ

Сычевски М. д-р.техн. наук, профессор BША Ломжа, Польша Syczewski Mikołaj prof. dr hab. WSA, Łomża. Polska

Аннотация. В статье представлена техническая характеристика преднапряжённых шпал, трещинообразование после длительного периода эксплуатации и определены причины появления трещин.

1. Технические характеристики шпал INBK-7D

В Польше железнодорожная колея равна 1435 мм. Преднапряжённые, струнобетонные шпалы типа INBK-7D производились и применялись в 1970 строительстве железнодорожного ПУТИ года. характеристики шпал INBK-7D следующие: длина 250 см, поверхность опирания на баласт 6310 см², напрягающая арматура 8x7Ø25 мм. Поперечное сечение шпалы непостоянное по её длине. В подрельсовом сечении ширина нижней грани составляет 300 мм, а верхней – 176 мм. В средней части шпалы, при нижней грани на длине 700 мм, ширина была уменьшена на 120 мм. Уменьшение ширины нижней грани способствтовало снижению отрицательных изгибающих моментов в средней части шпалы [1, 2].

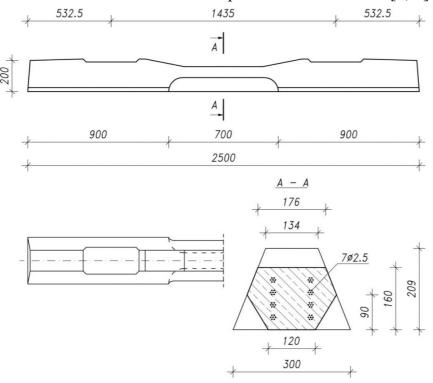


Рисунок 1 – Преднапряженная шпала INBK-7D

Шпалы проектировали как одиночные балки на упругом основании. Применялись две схемы внешней нагрузки и опирания на баласт. В первой схеме нагрузку составляли две вертикальные силы Q=140 кH, действующие в подрельсовых сечениях и одна горизонтальная сила H=60 кH действующая на головку рельса (рисунок 2).

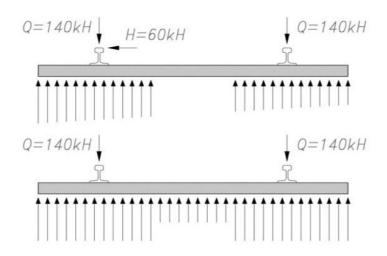


Рисунок 2 – Расчетные схемы нагрузки и опирания на балласт

В среднем фрагменте длиной 700 мм шпала не опиралась на баласт. Во второй расчётной схеме шпала опиралась на баласт по всей длине, но в средней части пассивное давление принято менше, чем в остальных. Нагрузка шпалы принята в виде двух вертикальных сил Q=140 кH сосредоточенных в подрельсовых сечениях. С целью уменьшения изгибающего момента в средней части принято уменьшенную ширину шпалы и трапециевидную её форму.

2. Трещиностойкость шпал

Шпалы у производителя подвергались испытаниям трещиностойкости в подрельсовых сечениях [5]. Трещиностойкость определялась при испытаниях на изгиб подрельсового фрагмента шпалы [6]. Схема испытаний шпал представлена на рисунке 3.

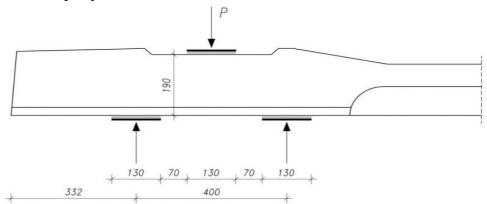


Рисунок 3 – Схема проверки трещиностойкости подрельсового сечения шпалы

Сила нагузки и сила реакции опор передавались на шпалу через резиновые прокладки. Сила нагрузки, при которой может образоватся трещина в подрельсовом сечении, определяется по формуле

$$P_r = \frac{8M_r}{2L - l} \,, \tag{1}$$

в которой

 M_{r} - изгибающий момент при котором может образоватся трещина

L = 400мм – расстояние опор

l=300мм — длина, на которой на оси подрельсового участка шпалы распределяется сила P_r

Изгибающий момент, при котором может образоватся трещина, определенный внутренними геометрическими и механическими характеристиками преднапряженной шпалы в подрельсовом сечении можно представить в форме

$$M_r = W_{op}(\sigma_{bv} + 1.7R_{bzk})$$
, (2)

в которой W_{op} - момент сопротивления,

 σ_{bv} - нормальные напряжения на нижней крайней грани шпалы от преднапряжения,

 $R_{\it bzk}$ - прочность бетона на растяжение.

В зависимости от величины силы нагрузки, при которой образуется трещина в подрельсовом сечении, шпалы зачислялись_к одному из трех классов: I (250кH), II (230кH), III (210кH). В каждой шпале предназначенной к проверке трещиностойкости использовали оба подрельсовые сечения. В среднем сечении шпалы на трещиностойкость не проверались.

3. Трещинообразование шпал

Струнобетонные шпалы INBK-7D были изготовлены и уложены в железнодорожный путь в 1980 году. Шпалы INBK-7D были спроектированы с тщательным соблюдением условий содержания железнодорожного пути [3]. Дополнение щебня и подбивку шпал следует выполнять на крайних фрагментах шпал длиной 900мм, с исключением средней части длиной 700мм. После добавки щебня, его уплотнения и подбивки шпал, уровень щебня должен быть ниже верхней грани шпал[4].

В железнодорожном пути рассматриваемым в данной статье, добавка щебня и подбивка шпал выполнялись неправильно. Уровень щебня получился слишком высокий, а подбивка шпал была выполнена в средней их части.

На железодорожном пути было помечено шесть участков, в которых трещинообразование было интенсивным. Характеристика трещинообразования шпал представлена в таблице 1.

В средней части шпалы верхние напрягающие арматурные свивки 7Ø 2,5 расположены на расстоянии 25мм от верхней грани шпалы, а защитный слой бетона составляет только 21мм.

Таблица 1. Характеристика трещинообразования в шпалах в подозрительных участках пути

j 100 110 11 j 11				
Символ	Длина участка	Количество шпал		
участка пути	пути	общее	общее с трещинами	
	M	штук	штук	%
I	140	216	210	97
II	47	72	72	100
III	185	285	268	94
IV	153	235	204	87
V	212	328	266	82
VI	77	118	100	85

При широко раскрытых трещинах арматура подвергнута воздействию коррозии. Во время осмотра были обнаружены случаи полностью скорродированной арматуры, потери фрагментов бетона, что свидетельствует о полном разрушении сечений преднапряженных элементов.

Рисунок 4 –Широко раскрытые трещины на верхней поверхности межрельсовых фрагментов шпал

Недоброкачественное техническое состояние, а также неэстетичный вид привели_к тому, что железнодорожный путь засыпали щебнем поэтапно до такого уровня, что видны только верхние головки рельсов (рисунок 5).

Рисунок 5 — Поэтапная маскировка трещин на верхней поверхности шпал. 1-этап первый (видимы только фрагменты шпал) 2- этап второй (шпалы полностью прикрыты щебнем)

4. Причины образования трещин в шпалах

В рассматриваемом пути подбивка шпал выполнялась неправильно, несогласно с техническими требованиями. Дополнение щебня и подбивка шпал выполнялись на всей длине, такде в средних фрагментах шпал. В связи с тем образовалось увеличение опирания на баласт средних фрагментов шпал. При высоком уровне баласта, его уплотнению, а также при самоуплотнению, возникло увеличение пассивного давления баласта в средних фрагментах шпал. Следующим фактором было увеличение изгибающего момента в средних межрельсовых фрагментах шпал. Чрезмерное увеличение момента привело к образованию трещин, а затем к широко раскрытым трещинам.

Кроме основных, появились вторичные трещины, увеличилась ширина их раскрытия, что в итоге привело к тому, что трещины оставались широко раскрытыми, даже при отсутствии внешней нагрузки.

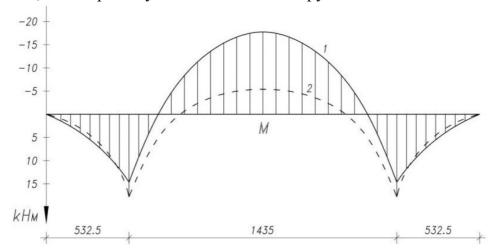


Рисунок 6 – Эпюры изгибающих моментов в шпале для второй расчетной схемы. 1- шпала с постоянной шириной нижней грани шпалы (300 мм), 2-шпала INBK-7D (ширина средней части шпалы 120 мм)

Увеличение изгибающих моментов в среднем сечении шкалы вызванное увеличением ширины подошвы шпалы с 120мм на 300мм представлено на рисунке 6. Увеличение пассивного давления баласта в среднем фрагменте шпалы существенно не влияет на величину изгибающих моментов в подрельсовых сечениях.

Выводы. 1. Основной причиной трещинообразования_и разрушения преднапряженных шпал INВК-7D является неправильная их подбивка и дополнение щебня в средних фрагментах шпал. 2. Увеличение пассивного давления баласта на шпалы в средних частях (шпал) привело к предельному состоянию несущей способности. 3. Закрытие шпал щебнем маскирует трещины, но их не устраняет, а пользователям дает ложное самоудовлетворение.

Литература. 1. Basiewicz T. Nawierzchnia kolejowa z podkładami betonowymi. Wydawnictwo Komunikacji i Łączności. Warszawa 1969. 2. Dyśko A. Projekt podkładu z betonu sprężonego typu INBK -7. Praca COBiRTK nr D-109/z/s. Warszawa 1969. 3. Praca zbiorowa pod redakcją Jana Sysaka. Drogi kolejowe. PWN. Warszawa 1982. 4. Syczewski M. Czynniki określające jakość podkładów INBK-7. Drogi kolejowe nr 8/1982. 5. BN-75/8939-01 Nawierzchnia kolei normalnotorowej i wąskotorowej. Podkłady betonowe. 6. BN-85/8939-01/00 Nawierzchnia kolei normalno- i wąskotorowej. Wymagania i badania.