ОПТИМАЛЬНЫЕ ТЕХНИЧЕСКИЕ ПОТЕРИ ЭЛЕКТРОЭНЕРГИИ В СИЛОВЫХ ТРАНСФОРМАТОРАХ **РАСПРЕДЕЛИТЕЛЬНЫХ** ЭЛЕКТРИЧЕСКИХ СЕТЕЙ

Уровень технических потерь электроэнергии в разомкнутых электрических сетях 0,38-6-10 кВ в основном зависит от режимов работы линий 0,38-6-10 кВ и понижающих потребительских трансформаторов 6(10)/0,4 кВ. Настоящей публикацией открывается серия материалов, в которых исследуются загрузка линий распределительных сетей и уровни относительных технических потерь электроэнергии в них.

М.И. ФУРСАНОВ, д.т.н., профессор, заведующий кафедрой электрических систем БНТУ

В соответствии с Инструкцией по расчету и обоснованию нормативов расхода электроэнергии на ее передачу по электрическим сетям [1] под техническими потерями электроэнергии понимаются потери, обусловленные физическими процессами в проводниках и электрооборудовании при транспортировке электроэнергии по электрическим сетям.

В распределительных сетях 0,38-6-10 кВ этот показатель складывается из потерь в линиях электропередачи и потерь в основном и дополнительном электрооборудовании.

К потерям в основном оборудовании относятся потери электроэнергии в силовых трансформаторах и линейных регуляторах (в том числе холостого хода и нагрузочные), потери холостого хода в трансформаторах дугогасящих реакторов, токоограничивающих реакторах, компенсирующих устройствах и т.д.; к потерям в дополнительном оборудовании - потери в изоляции кабельных линий, вентильных разрядниках, ограничителях перенапряжений, счетчиках непосредственного включения и т.д. [1].

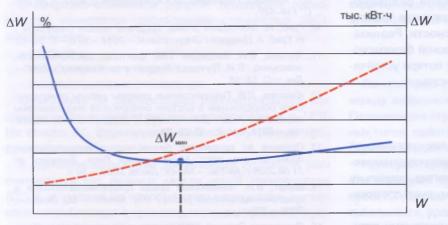


Рис. 1. Динамика технических потерь электроэнергии в абсолютных (тыс. кВт.ч, пунктирная линия) и относительных (%) единицах в зависимости от отпуска электроэнергии в сеть

Преобладающими составляющими технических потерь электроэнергии в распределительных электрических сетях являются потери в линиях 0,38-6-10 кВ и силовых трансформаторах 6(10)/0,4 кВ. В таблице 1 представлены их структура и динамика. Из таблицы видно, что в дополнительном оборудовании потери не велики - от 1,56 до 2,42 % от суммарных потерь в сети района. В основном же уровень технических потерь электроэнергии в разомкнутых электрических сетях 0,38-6-10 кВ определяют режимы работы линий 0,38-6-10 кВ и понижающих потребительских трансформаторов 6(10)/0,4 kB.

Таблица 1. Структура и динамика потерь электроэнергии в распределительных электрических сетях 0,38-6-10 кВ РЭС «Х», тыс. кВт-ч (%)

Вид потерь электроэнергии	Январь	Февраль	Март	Апрель	Май	Июнь
Баланс пропуска электроэнергии	4259,661	3962,139	3599,012	3250,563	2837,925	2784,828
Условно-постоянные, всего	173,606 (4,08 %)	120,486 (3,04 %)	133,985 (3,72 %)	129,663 (3,99 %)	133,571 (4,71 %)	128,425 (4,61 %)
в том числе: - холостого хода трансформаторов;	124,386	113,373	126,11	122,042	125,696	120,804
 в дополнительном оборудовании 	49,22 (1,56 %)	7,113 (2,03 %)	7,875 (2,00 %)	7,621 1,96 %	7,875 (2,19 %)	7,621 (2,39 %)
Климатические	14,342 (0,34 %)	16,725 (0,42 %)	12,499 (0,35 %)	12,887 (0,40 %)	9,988 (0,35 %)	11,644 (0,42 %)
Нагрузочные, всего:	456,818 (10,72 %)	332,607 (8,39 %)	278,529 (7,74 %)	269,621 (7,99 %)	226,459 (7,98 %)	190,358 (6,84 %)
Нагрузочные 10 кВ, всего	55,018	53,200	38,600	34,899	30,930	26,336
в том числе: – в линиях электро- передачи 10 кВ; – в трансформаторах	46,923 8,095	45,796 7,404	33,229 5,371	30,085 4,814	27,054 3,876	22,797 3,539
Нагрузочные, 0,38 кВ	401,800	279,200	239,700	224,500	195,300	163,800
Технические потери электроэнергии, всего	590,424	453,093	412,514	389,284	360,030	318,783

Вид потерь электроэнергии	Июль	Август	Сентябрь	Октябрь	Ноябрь	Декабрь
Баланс пропуска электроэнергии	2967,673	2980,963	2817,037	3478,151	3658,227	3856,906
Условно-постоянные, всего	132,706 (4,47 %)	132,706 (4,45 %)	126,728 (4,50 %)	132,708 (3,82 %)	129,134 (3,53 %)	136,161 (3,53 %)
в том числе: – холостого хода трансформаторов;	124,831	124,831	119,107	124,833	121,513	128,286
– в дополнительном оборудовании	7,875 (2,33 %)	7,875 (2,30 %)	7,621 (2,42 %)	7,875 (1,95 %)	7,621 (1,80 %)	7,875 (1,78 %)
Климатические	9,297 (0,31 %)	12,168 (0,41 %)	14,106 (0,50 %)	13,494 (0,39 %)	22,301 (0,61 %)	15,631 (0,41 %)
Нагрузочные, всего:	205,403 (6,92 %)	209,045 (7,01 %)	188,680 (6,70 %)	272,253 (7,83 %)	293,511 (8,02 %)	305,937 (7,73 %)
Нагрузочные 10 кВ, всего	27,074	28,416	23,358	34,324	42,289	42,208
в том числе: – в линиях электро- передачи 10 кВ; – в трансформаторах	23,408 3,666	24,864 3,552	20,312 3,046	30,171 4,153	37,269 5,020	36,926 5,282
Нагрузочные, 0,38 кВ	178,100	180,400	165,100	237,700	251,000	263,500
Технические потери электроэнергии, всего	338,109	341,751	215,408	404,961	422,645	442,098

Технический оптимум относительных потерь

Анализ технических потерь электроэнергии в электрических сетях целесообразно проводить на основе исследования аналитических зависимостей потерь в относительных ΔW (%) и абсолютных ΔW (тыс. кВт-ч) единицах от отпуска электроэнергии в сеть W, как прогнозируемого, так и фактического. В самом общем виде такие зависимости имеют вид, представленный на рис. 1.

Из приведенных кривых видно, что зависимость $\Delta W \% = f(W)$ имеет минимум $\Delta W_{\scriptscriptstyle{\text{мин}}}$ (отмечен точкой на сплошной линии), соответствующий равенству условно-постоянных и переменных потерь электроэнергии. В распределительных электрических сетях 0,38-6-10 кВ технический минимум относительных потерь электроэнергии соответствует равенству условно-постоянных потерь в понижающих трансформаторах 6(10)/0,4 κВ нагрузочных потерь электроэнергии в линиях 0,38, 6 и 10 кВ и трансформаторах.

Определим состояние распределительной сети 0,38—6—10 кВ, соответствующее техническому оптимуму (минимуму) относительных потерь электрической энергии. При этом, прежде всего, необходимо определиться с самим понятием «оптимального» уровня технических потерь электрической энергии и путями его использования для оценки возможных резервов по снижению потерь и разработки соответствующих мероприятий [2, 3].

Анализ и оценку технического оптимума (минимума) относительных потерь электрической энергии выполним на примере обобщенной схемы сети, изображенной на рис. 2.

Данная схема не является случайной. Она в полной мере отражает существующую в Республике Беларусь структуру распределительных электрических сетей: к работающим в основном в разомкнутом режиме распределительным линиям 6–10 кВ (на рис. 2 – Л 10) подключены понижающие трансформаторные подстанции 6(10)/0,4 кВ (на схеме – Т 6(10)/0,4 кВ), от которых отходят линии 0,38 кВ (Л 0,38).

Суммарные протяженности линий 0,38 и 6–10 кВ в районах электрических сетей примерно одинаковы (от 400 до 700 км), а средняя мощность одного трансформатора составляет порядка 100 кВА.

Наиболее распространенным сечением проводов, используемых на линиях 6–10 кВ, является 50 мм², а на линиях 0,38 кВ — 35 мм². Исходя из приведенных соображений, приняты следующие исходные параметры исследуемой сети: для Л 10 — сечение F=50 мм², I=1 км, $R_0=0,60$ Ом/км; для трансформатора Т 6(10)/0,4 кВ — $S_{\text{ном}}=100$ кВА, $\Delta P_{\text{x}}=0,27$ кВт, $\Delta P_{\text{x}}=1,97$ кВт; для Л ,38 — сечение F=35 мм², I=1 км, $R_0=0,79$ Ом/км.

Оценим и проанализируем загрузку и уровни относительных технических потерь электроэнергии поочередно во всех трех составляющих обобщенной схемы распределительной сети (рис. 2) — в силовых трансформаторах 6(10)/0,4 кВ, линиях 6–10 кВ, линиях 0,38 кВ отдельно, а затем при их совместной работе.

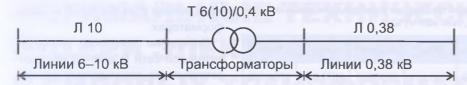


Рис. 2. Структурная схема распределительной электрической сети 0,38-6-10 кВ

В данной статье рассматривается указанные аспекты работы силовых трансформаторов распределительных электрических 0.38-6-10 kB.

Технические потери электроэнергии в понижающих потребительских трансформаторах 6(10)/0,4 кВ

Основной технико-экономической характеристикой трансформатора является стоимость трансформации электрической Однако эксплуатационный персонал всегда интересовал и будет интересовать вопрос о наивыгоднейшей загрузке (нагрузке) трансформатора данной номинальной мощности, определяющей оптимум (минимум) относительных технических потерь электроэнергии в нем [4-7].

Как известно, суммарные потери электроэнергии в силовом двухобмоточном трансформаторе ΔW_{τ} состоят из двух составляющих – ΔW , и ∆₩...:

$$\Delta W_{-} = \Delta W_{-} + \Delta W_{-} \tag{1}$$

где ΔW_* – потери холостого хода в стали трансформатора; $\Delta W_{\rm HI}$ – нагрузочные потери.

Потери электроэнергии холостого хода для конкретного трансформатора распределительной сети за время Т можно считать постоянными и определить по формуле:

$$\Delta W_{x} = \Delta P_{x} T$$
, (2)

где Т - расчетный период времени (час, сутки, месяц, квартал, год).

Нагрузочные потери электроэнергии в трансформаторе $\Delta W_{\rm HI}$ за период T равны

$$\Delta W_{,rr} = \Delta P_{,rr} T , \qquad (3)$$

где $\Delta P_{\rm kr}$ – потери активной мощности в трансформаторе:

$$\Delta P_{\text{HT}} = \frac{P_{\text{T}}^2 + Q_{\text{T}}^2}{U_{\text{post}}^2} R_{\text{T}}, \qquad (4)$$

где $R_{\rm r}$ – активное сопротивление трансформатора [4, 5]:

$$R_{r} = \Delta P_{\kappa} \frac{U_{\text{HOM}}^{2}}{S^{2}} . \tag{5}$$

Активные (P_{τ}) и реактивные (Q_{τ}) нагрузки трансформаторов в течение Т не остаются постоянными, а изменяются в соответствии с реальным графиком нагрузки потребителей, который может быть представлен состоящим из п одинаковых временных отрезков длительностью Δt , каждому из которых соответствуют определенные постоянные значения P_{M} и Q_{M} . Исходя из этого для любого интервала *\Delta t* имеем:

$$\Delta W_{\text{HT}} = \Delta P_{x} \Delta t, \qquad (6)$$

$$\Delta W_{\text{HT}} = \frac{P_{\Delta t}^{2} + Q_{\Delta t}^{2}}{U_{\text{HOM}}^{2}} \Delta P_{x} \frac{U_{\text{HOM}}^{2}}{S_{\text{HOM}}^{2}} \Delta t =$$

$$= \Delta P_{x} \frac{S_{\Delta t}^{2}}{S_{\text{HOM}}^{2}} \Delta t = \Delta P_{x} K_{\Delta \Delta t}^{2} \Delta t, \qquad (7)$$

где $k_{\scriptscriptstyle 3\Delta I}$ – коэффициент загрузки трансформатора, равный отношению $S_{\Delta t}/S_{\text{ном}}$, где $S_{\Delta t}$ – полная нагрузка трансформатора за время Δt .

Таким образом, формула для определения технических потерь электроэнергии в трансформаторе $\Delta W_{_{\mathrm{M}}}$ будет выглядеть следующими образом:

$$\Delta W_{\Delta t} = \Delta P_{\nu} \Delta t + \Delta P_{\nu} k_{\alpha \Delta}^2 \Delta t. \tag{8}$$

Определим $k_{3\Delta t}$, соответствующий минимуму относительных технических потерь электроэнергии в трансформа-

В относительных единицах величина ∆W., будет равна

$$\Delta W_{\Delta t} = \frac{\Delta P_{\kappa} \Delta t}{k_{\Delta \Delta t}} + \Delta P_{\kappa} k_{\Delta \Delta t} \Delta t. \qquad (9)$$

Из условия

$$\frac{\delta \Delta W_{M}}{\delta k_{M}} = -\frac{\Delta P_{K}}{k_{M}^{2}} + \Delta P_{K} = 0 \quad (10)$$

получим, что

$$k_{\rm adl} = \sqrt{\Delta P_{\rm x}/\Delta P_{\rm K}}.$$
 (11)

Из (11) следует важнейший вывод: для любой ступени графика нагрузки трансформатора длительностью Δt оптимальное значение (минимум) относительных технических потерь электроэнергии в трансформаторе достигается в том случае, когда нагрузочные потери в его обмотках равны потерям холостого хода. Наивыгоднейшая загрузка трансформатора k_{av} (далее k_{aw}) в этом случае равна отношению $\Delta P_x/\Delta P_x$, которое для современных типов трансформаторов составляет

Таблица 2. Исходные данные и результаты расчета потерь в трансформаторах распределительных электрических сетей 0,38-10 кВ

S _{HOM} , KBA	$ΔP_x$, κΒτ	$ΔP_{\kappa}$, κΒτ	k _{aw} , o.e.	Р₂, кВт	Δ W ,,%
16	0,085	0,440	0,43	5,50	3,00
25	0,115	0,600	0,44	8,80	2,55
40	0,155	0,880	0,42	13,44	2,25
63	0,220	1,280	0,41	20,66	2,09
100	0,270	1,970	0,37	29,66	1,80
160	0,410	2,600	0,40	51,20	1,58
250	0,580	3,700	0,40	80,00	1,43
400	0,830	5,400	0,39	124,80	1,31
630	1,240	7,400	0,41	206,64	1,19
Среднее значение	0,43	2,7	0,40	60,07	

1. $P_2 = k_{AW} S_{ROW} \cos \varphi_2$; значение $\cos \varphi_2$ принято равным 0,8.

2.
$$\Delta W_{x} \% = \frac{2\Delta W_{x} 10^{2}}{W_{xy}} = \frac{2\Delta P_{x} T 10^{2}}{P_{2} T + 2\Delta P_{x} T}$$

примерно 40 % [8]. При любой другой нагрузке уровень относительных технических потерь электроэнергии в трансформаторе всегда будет больше: при загрузке менее 40 % из-за преобладания потерь холостого хода над нагрузочными, при нагрузке более 40 % – наоборот.

Исходные данные и результаты расчета оптимальных (минимальных) значений суммарных относительных значений технических потерь электроэнергии в двухобмоточных трансформаторах распределительных сетей приведены в таблице 2.

Примечательно, что оптимальное значение коэффициента загрузки трансформатора ($k_{\Delta W} = 40$ %), определяющее минимум относительных технических потерь в нем, соответствует и максимуму КПД (η) трансформатора [9]:

$$\eta = P_2/P_1, \tag{12}$$

где P_1 – активная мощность на входе трансформатора:

$$P_{1} = P_{2} + \Delta P_{x} + \Delta P_{HT}.$$
(13)

$$\eta = \frac{P_{2}}{P_{2} + \Delta P_{x} + \Delta P_{HT}} 100\% =$$

$$= \left(1 - \frac{\Delta P_{x} + \Delta P_{HT}}{P_{2} + \Delta P_{x} + \Delta P_{HT}}\right) 100\%.$$
(14)

Имея в виду, что

$$P_2 = k_{AW}S_{HOM}\cos\varphi_2$$

$$\Delta P_{\rm HT} = \Delta P_{\rm K} k_{\Delta W}^2$$

получим:

$$\eta = 1 - \frac{\Delta P_{\rm x} + \Delta P_{\rm x} k_{\rm AW}^2}{k_{\rm AW} {\rm S}_{\rm HOM} {\rm cos} \varphi_{\rm 2} + \Delta P_{\rm x} + \Delta P_{\rm x} k_{\rm \Delta W}^2}.(15)$$

Возьмем от КПД трансформатора первую производную $\delta \eta/\delta k_{_{AW}}$ (формулы (16) и (17) представлены на

Из числителя формулы (17) вид-

$$\Delta P_{x} = k_{\Delta W}^{2} \Delta P_{x}$$

то есть

$$k_{\Delta W} = \sqrt{\Delta P_{\rm x}/\Delta P_{\rm x}}.$$
 (18)

Это означает, что максимальное значение КПД трансформатора достигается при такой же нагрузке, при которой переменные (нагрузочные) потери в трансформаторе равны его постоянным потерям. Из изложенного можно сделать следующие выводы:

- 1. Двухобмоточные трансформаторы являются весьма эффективными электротехническими устройствами - по данным таблицы 2 их максимальный КПД равен 97-98.8 %.
- 2. Оптимальный уровень относительных технических потерь электроэнергии в двухобмоточных трансформаторах 6(10)/0,4 кВ колеблется в очень небольших пределах - от 1,19 до 3 % (табл. 2) и достигается при их сорокопроцентной загрузке. При любой другой нагрузке относительные потери в трансформаторах всегда будут больше.

$$\eta = \frac{k_{\Delta W} S_{\text{HOM}} \cos \varphi_2}{k_{\Delta W} S_{\text{HOM}} \cos \varphi_2 + \Delta P_x + \Delta P_x k_{\Delta W}^2},$$
(16)

$$\frac{\delta\eta}{\delta k_{\scriptscriptstyle AW}} = \frac{S_{\scriptscriptstyle {\scriptscriptstyle HOM}} {\rm cos} \varphi_2(k_{\scriptscriptstyle {\scriptscriptstyle AW}} S_{\scriptscriptstyle {\scriptscriptstyle HOM}} {\rm cos} \varphi_2 + \Delta P_{\scriptscriptstyle {\scriptscriptstyle X}} + k_{\scriptscriptstyle {\scriptscriptstyle AW}}^2 \Delta P_{\scriptscriptstyle {\scriptscriptstyle K}}) - (S_{\scriptscriptstyle {\scriptscriptstyle HOM}} {\rm cos} \varphi_2 + 2k_{\scriptscriptstyle {\scriptscriptstyle AW}} \Delta P_{\scriptscriptstyle {\scriptscriptstyle X}}) k_{\scriptscriptstyle {\scriptscriptstyle AW}}^2 S_{\scriptscriptstyle {\scriptscriptstyle HOM}} {\rm cos} \varphi_2}{(k_{\scriptscriptstyle {\scriptscriptstyle AW}} S_{\scriptscriptstyle {\scriptscriptstyle HOM}} {\rm cos} \varphi_2 + \Delta P_{\scriptscriptstyle {\scriptscriptstyle X}} + \Delta P_{\scriptscriptstyle {\scriptscriptstyle X}} k_{\scriptscriptstyle {\scriptscriptstyle AW}}^2)^2} =$$

$$=\frac{\Delta P_{\rm x}S_{\rm \tiny HOM}{\rm cos}\phi_2+S_{\rm \tiny HOM}{\rm cos}\phi_2k_{\Delta W}\Delta P_{\rm \tiny K}-2S_{\rm \tiny HOM}{\rm cos}\phi_2\Delta P_{\rm \tiny K}k_{\Delta W}^2}{(k_{\Delta W}S_{\rm \tiny HOM}{\rm cos}\phi_2+\Delta P_{\rm \tiny K}+\Delta P_{\rm \tiny K}+\Delta P_{\rm \tiny K}k_{\Delta W}^2)^2}=$$

$$= \frac{S_{\text{HOM}} \cos \varphi_2 (\Delta P_x - \Delta P_x k_{\Delta W}^2)}{(k_{\Delta W} S_{\text{HOM}} \cos \varphi_2 + \Delta P_x + \Delta P_x k_{\Delta W}^2)^2} = 0 . \tag{17}$$

Рис. 3. Формулы (16) и (17)

- 3. Идеальным с точки зрения минимума относительных технических потерь электроэнергии является режим работы трансформатора с равномерным графиком нагрузки.
- 4. Оптимальные значения (минимум) относительных технических потерь в трансформаторах целесообразно использовать при оценке и анализе резервов по снижению потерь электроэнергии в распределительных электрических сетях энергосистем на основе сравнения фактических потерь с оптимальными.

Список литературы

- 1. Инструкция по расчету и обоснованию нормативов расхода электроэнергии на ее передачу по электрическим сетям: СТП 09110.09.455-11: утв. ГПО «Белэнерго» 28.12.2011. -Минск: Минэнерго Респ. Беларусь, 2013. - 44 c.
- 2. Кобец, Б.Б. Инновационное развитие электроэнергетики на базе конвенции Smart Grid / Б.Б. Кобец, Н.О. Волкова. - М.: Энергия, 2010 - 207 с.
- 3. Бернд, М.М. Инновационная техника для интеллектуальных электрических сетей Smart Grid / М.М. Бернд // Энергетика. - 2010. - № 11. - С. 9-15.
- Фурсанов, М.И. Основы проектирования энергосистем: учеб. пособие для студентов энергетических специальностей в 2 ч. / М.И. Фурсанов, В.Т. Федин. - Минск: БНТУ, 2010. -Ч. 2. - 203 с.
- Фурсанов, М.И. Определение и анализ потерь электроэнергии в электрических сетях энергосистем / М.И. Фурсанов. - Минск: Белэнергосбережение, 2005. - 207 с.
- 6. Фурсанов, М.И. Определение оптимальных коэффициентов загрузки трансформаторов распределительных сетей в условиях эксплуатации / М.И. Фурсанов, Н.С. Петрашевич // Известия высших учебных заведений и энергетических объединений Энергетика: международный научно-технический журнал. -2012. - No 4. - C. 9-17.
- 7. Фурсанов, М.И. Об оптимальных режимах работы силовых трансформаторов / М.И. Фурсанов, В.Н. Радкевич // Известия высших учебных заведений и энергетических объединений СНГ. – Энергетика: международный научно-технический журнал. - 2008. -Nº 2. - C. 32-38.
- 8. Силовые трансформаторы: каталог Минского электротехнического завода имени В.Н. Козлова. - Минск, 2007. - 76 c.
- 9. Костенко, М.П. Электрические машины: учебник для энергетических и электротехнических вузов и факультетов / М.П. Костенко, Л.М. Пиотровский. - М.; Л.: Энергия, 1964. - 544 с. с рис.