КОНЕЧНОЭЛЕМЕНТНЫЙ АНАЛИЗ КОНТАКТНОГО ВЗАИМОДЕЙСТВИЯ В СОПРЯЖЕНИЯХ ИЗ ГРАДИЕНТНЫХ МАТЕРИАЛОВ

н.с. Рябченко Т.В., к.т.н. Шилько С.В., мл.н.с. Петроковец Е.М.

ГНУ «Институт механики металлополимерных систем им. В.А. Белого» НАН Беларуси, Гомель

Введение. Разрабатываемые и широко используемые в настоящее время композиты триботехнического назначения часто представляют собой градиентные материалы (ГМ), поскольку характеризуются выраженным дискретным или непрерывным изменением физико-механических свойств (твердости, упругости и т.п.) по глубине, т.е. при удалении по нормали от поверхности трения.

Во многих случаях использование указанных материалов позволяет существенно (на 1-2 порядка) повысить износостойкость сопряжений и формулируется, как технологическая рекомендация, например, в виде известного правила «положительного градиента» [1]. Для формирования градиента свойств применяют различные способы: на поверхность трения наносят одно- или многослойные покрытия, производят деформационное упрочнение, термообработку и физико-химическое модифицирование готовых изделий из исходно однородных материалов [2,3]. Так как выбор структуры ГМ обычно осуществляется эмпирическим путем для каждого конкретного случая, актуальна разработка методов проектирования «оптимально градиентных материалов», что возможно лишь на основе механико-математического моделирования.

Путем решения соответствующих контактных задач можно получить расчетную оценку напряженно-деформированного состояния (НДС) и прогнозировать триботехнические характеристики узлов трения исходя из геометрии сопряжения, действующих нагрузок и упругих характеристик используемых материалов [4]. Следовательно, анализ контактного взаимодействия позволяет определить зависимости параметров упругости ГМ по глубине (модуля Юнга E(z) и коэффициента Пуассона v(z)), обеспечивающие оптимальное распределение напряжений и перемещений в зоне контакта и приповерхностных слоях пары трения.

Для изучения НДС сопряжений из градиентных материалов применимы аналитические и численные методы расчета, каждый из которых, как отмечено в работе авторов [5], имеет достоинства и недостатки. При определенной модификации замкнутых решений граничных задач для ГМ в виде упругого бесконечного слоя на жестком основании, облегчающей их численную реализацию [6-8], они находят применение в практике расчетов подшипников скольжения и качения, направляющих и других пар трения из ГМ, когда использование гипотезы о неограниченной длине покрытия является корректным.

Однако при изучении резино-металлических демпферов, сегментных и упорных подшипников и т.д.) приходится рассматривать антифрикционные элементы конечных размеров. Хотя для их трибоанализа были предложены отдельные аналитические решения, более адекватными, очевидно, являются расчеты методами конечных и граничных элементов, не критичными к виду функций E(z) и v(z), а также геометрии контакта [8-10].

Целью настоящего исследования являлся анализ напряженно-деформированного состояния области контакта и приповерхностных слоев с учетом градиента модуля Юнга и коэффициента Пуассона материала по глубине.

На рисунке 1 приведена схема трибосопряжений из ГМ с положительным (а) и отрицательным (б) градиентом модуля Юнга.

Рис. 1. Контактное нагружение градиентного материала с отрицательным E'(z)<0 (a) и положительным E'(z)>0 (б) градиентом упругих свойств

Были рассмотрены 2 контактных сопряжения из градиентных материалов, расчет НДС которых производился с использованием программного продукта ANSYS [10].

Дискретные (по слоям *i*) значения модуля упругости и коэффициента Пуассона двух вариантов ГМ с указанным изменением E(z) и v(z) представлены в таблице 1. В частности, при моделировании ГМ, получаемого дисперсным наполнением при линейном изменении содержания наполнителя по глубине, соответствующее изменение E(z) описывается экспоненциальным законом. Использовались также данные работы [6], в которых были исследованы закономерности изменения коэффициента Пуассона и модуля Юнга по глубине.

Таблица 1 — Послойные значения модуля упругости (МПа) и коэффициента Пуассона для двух вариантов градиентного материала

№ слоя	1	2	3	4	5	6	7	8	9	10
v'(z) < 0	0,4	0,345	0,32	0,308	0,303	0,301	0,3	0,3	0,3	0,3
v'(z) > 0	0,4	0,446	0,47	0,483	0,49	0,494	0,497	0,498	0,499	0,499
№ слоя	1	2	3	4	5	6	7	8	9	10
E'(z) < 0,	34,6	24,7	20,8	17,6	14,8	12,3	10,2	8,3	6,5	5,1
E'(z) > 0,	5,1	6,5	8,3	10,2	12,3	14,8	17,6	20,8	24,7	34,6

Подпятник упорного подшипника. На рисунке 2 показаны конечноэлементные модели 2-х узлов трения в виде упорного подшипника с дисковым подпятником из ГМ (осесимметричное напряженное состояние) и ползуна с направляющей из ГМ (плоскодеформированное состояние). В зоне выраженного градиента упругих свойств структурно-неоднородного деформируемого тела сопряжения производилось пропорциональное сгущение сетки дискретизации.

Параметры структурно-неоднородного фрагмента подпятника из градиентного материала задавались следующими: диаметр d = 50 мм, высота h = 9,9 мм; приповерхностная область толщиной 0,1 мм представлялась набором из 10-ти адгезионно-связанных слоев, толщина каждого слоя составляла 0,01 мм. Материал вала – сталь (модуль Юнга $E_c = 200$ ГПа, коэффициент Пуассона $v_c = 0,28$); нижнее основание подпятника адгезионно с недеформируемым основанием.

Были определены распределения контактных напряжений и перемещений в зоне контакта, включая максимальные контактные давления, и эквивалентные напряжения в приповерхностных слоях материала. Установлено, что максимальное контактное давление p^{\max} при отрицательном градиенте модуля Юнга по глубине E'(z) < 0 почти в два раза выше по сравнению со значением p^{\max} , соответствующим положительному гради-

енту, в то время как в области контакта подпятника из однородного материала максимальные значения давлений имеют промежуточное значение 1,12 МПа.

Рис. 2. КЭ модели узлов трения с антифрикционными элементами из ГМ: 1 – структурно-неоднородный антифрикционный элемент, 2 – контртело, а) вал и дисковый подпятник; б, в) прямоугольный ползун и направляющая

При изучении влияния градиента коэффициента Пуассона v'(z) установлено, что наибольшее значение расчетного контактного давления наблюдается при использовании однородного материала; при v'(z)>0 этот параметр уменьшается более чем в два раза, а при v'(z)<0 – более чем в три раза. Эквивалентные напряжения при E=const и при E'(z)>0 практически совпадают, а при E'(z)<0 возрастают почти в 1,5 раза. Имеет место значительные вариации максимального эквивалентного напряжения при изменении градиента v(z): при v'(z)>0 напряжения σ_{3KB}^{max} уменьшаются более чем в 1,5 раза и при v'(z)<0 – почти в три раза по сравнению с v = const.

Призматический индентор (ползун). Рассмотрено также контактное взаимодействие жесткого призматического ползуна с направляющей из ГМ. В таблице 2 и на рисунках 3,4 представлены результаты расчета в виде максимальных значений контактных давлений p^{max} при вертикальном перемещении ползуна $\Delta = 0,1$ мм и варьировании коэффициента трения в пределах от 0 до 1; знаком * отмечены расчеты с учетом симметрии зоны контакта (-*a*, *a*).

		p^{max} , МПа					
f	E'(z)	$x = a^*$	v'(z)	$x = a^*$	x = -a	x = a	%
0		2,12		1,59	1,51	1,47	2,7
0,3	E=const	2,31	v=const	1,64	1,53	1,52	0,7
1		2,33		1,64	1,53	1,52	0,7
0		0,58		2,03	2,20	2,18	0,9
0,3	E'(z) > 0	0,58	v'(z) > 0	2,24	2,23	2,21	0,9
1		0,57		2,27	2,24	2,22	0,9
0		0,99		1,39	1,51	1,48	2,0
0,3	E'(z) < 0	1,19	v'(z) < 0	1,44	1,53	1,52	0,7
1		1,23		1,44	1,54	1,52	1,3

Таблица 2 — Максимальные контактные давления для различных градиентов модуля Юнга и коэффициента Пуассона материала направляющей

а б Рис. 3. Распределение давлений (а) и касательных напряжения (б) в области контакта при отрицательном градиенте коэффициента Пуассона v'(z)<0 и коэффициенте трения f = 0,3

Рис. 4. Распределение давлений (а) и касательных напряжения (б) в области контакта при отрицательном градиенте модуля Юнга E'(z) < 0 и коэффициенте трения f = 0,3

Можно заметить, что градиент параметров упругости деформируемого тела сопряжения оказывает существенное влияние на характер распределения компонент напряженного состояния и величину максимальных давлений в рассмотренных трибосопряжениях. Увеличение коэффициента трения приводит к росту максимальных контактных давлений, наиболее заметному в случае отрицательного градиента модуля Юнга (около 20%). При выбранной схеме дискретизации отклонение значений давлений в симметрично расположенных краевых точках контакта не превышает 3%.

Заключение.

Показаны возможности метода конечных элементов при моделировании напряженно-деформированного состояния узлов трения из градиентных материалов. Установлено, что градиент параметров упругости деформируемого тела сопряжения оказывает существенное влияние на характер распределения компонент напряженного состояния и величину максимальных давлений.

Достигнутая точность расчетов при сравнительно простой дискретизации свидетельствует о пригодности разработанных моделей для расчета узлов трения. Представляет интерес прогнозирование структуры и состава композиционных материалов для реализации оптимальных градиентов упругих свойств в элементах сопряжений.

*Работа выполнена в рамках проекта Т16Р-202 БРФФИ.

ЛИТЕРАТУРА

- 1. Крагельский И.В. Узлы трения машин. Справочник. М.: Машиностроение, 1984. 280 с.
- 2. Dobrzański L.A., Żukowska L.W. Structure and Properties of Gradient PVD Coatings Deposited on the Sintered Tool Materials // J. of Achiev. in Mater. and Manuf. Eng. 2011. Vol. 44, No. 2. P. 115–139.
- 3. Lee P.H. Fabrication, Characterization and Modeling of Functionally Graded Materials. Columbia University. – 2013.
- 4. Джонсон К. Механика контактного взаимодействия. М.: Мир, 1989. 509 с.
- 5. Иванов Г.В. К методам решения плоской смешанной задачи для неоднородного упругого слоя // Числ. мет. решения задач теории упругости и пластичности. Ч. 1. – Новосибирск. – 1978. – С. 69–78.
- 6. Кузнецов Е.А., Гороховский Г.А. Напряженное состояние неоднородного полупространства с переменным по глубине коэффициентом Пуассона при действии на него сосредоточенной силы // Трение и износ. – 1984. – Т. 5, № 5. – С. 806–816.
- 7. Дураев А.Е. Напряжения в полупространстве с модулем упругости, возрастающим с глубиной от действия нормально приложенной к границе нагрузки // Мордов. ун-т. Саранск. 1985. 12 с.
- 8. Шилько С.В., Петроковец Е.М., Семенова Т.В. Оценка контактной жесткости локальных покрытий: сопоставление расчетных методов // Трение и износ. – 2001. – Т. 22, № 2. – С. 128–133.
- 9. Birman V., Byrd L.W. Modeling and Analysis of Functionally Graded Materials and Structures // Appl. Mech. Reviews, Trans. of ASME. Sept. 2007. Vol. 60. P. 195–216.
- 10. ANSYS. Revision 14.0.

E-mail: <u>shilko_mpri@mail.ru</u> <u>rits@tut.by</u> <u>katya_petro@mail.ru</u>

Поступила в редакцию 12.09.2016