DOI: 10.21122/1029-7448-2017-60-2-133-146

УДК 621.313

Расчет индуктивностей синхронного двигателя с инкорпорированными постоянными магнитами

Фыонг Ле Нго¹⁾

¹⁾Белорусский национальный технический университет (Минск, Республика Беларусь)

© Белорусский национальный технический университет, 2017 Belarusian National Technical University, 2017

Реферат. Синхронный двигатель с инкорпорированными постоянными магнитами (СДИПМ) относится к явнополюсным, характеризующимся неравенством индуктивностей по продольным (d) и поперечным (q) осям. Электромагнитный момент СДИПМ состоит из двух составляющих: активной и реактивной, которая зависит от продольной и поперечной индуктивностей. Представлен аналитический метод расчета собственных индуктивностей и индуктивностей взаимоиндукции трехфазного СДИПМ. Распределенные обмотки статора замещены эквивалентными синусными обмотками. Ротор с инкорпорированными постоянными магнитами замещен эквивалентным явнополюсным ротором. Участки магнитной цепи, содержащей постоянные магниты, воздушные барьеры и стальные мосты, замещены эквивалентным воздушным зазором. Получены выражения магнитной индукции, создаваемой током обмоток статора в каждой точке воздушного зазора, а также потокосцеплений обмоток статора. Уравнения собственных индуктивностей фаз А, В, С и индуктивностей взаимоиндукции определены из потокосцеплений. Индуктивности осей d и q получены в результате преобразования осей *abc-dq*. Результаты разработанного аналитического метода и метода конечных элементов представлены в виде графика. Осуществлено сравнение расчетов, полученных этими двумя методами.

Ключевые слова: синхронный двигатель с инкорпорированными магнитами, эквивалентная синусная обмотка, эквивалентный явнополюсный ротор, индуктивность

Для цитирования: Нго, Фыонг Ле. Расчет индуктивностей синхронного двигателя с инкорпорированными постоянными магнитами / Фыонг Ле Нго // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2017. Т. 60. № 2. С. 133–146. DOI: 10.21122/1029-7448-2017-60-2-133-146

Calculation of Inductance of the Interior Permanent Magnet Synchronous Motor

Phyong Le Ngo¹⁾

¹⁾Belarusian National Technical University (Minsk, Republic of Belarus)

Abstract. Interior permanent magnet synchronous motor (IPMSM) refers to salient-pole synchronous motors, characterized by inequality of inductances of longitudinal (d) and transverse (q) axes.

Адрес для переписки	Address for correspondence
Нго Фыонг Ле	Ngo Phuong Le
Белорусский национальный технический университет	Belarusian National Technical University
просп. Независимости, 65/2,	65/2 Nezavisimosty Ave.,
220013, г. Минск, Республика Беларусь	220013, Minsk, Republic of Belarus
Тел.: +375 17 293-95-61	Tel.: +375 17 293-95-61
ngo.phuong.le@gmail.com	ngo.phuong.le@gmail.com

Electromagnetic torque of IPMSM consists of two components: active torque and reactive torque; the latter depends on inductances of d and q axes. An analytical method to calculate own inductances and mutual inductances of a three-phase IPMSM is presented. Distributed windings of the stator are substituted by equivalent sine distributed windings. An interior permanent magnets rotor is substituted by an equivalent salient-pole rotor. Sections of a magnetic circuit comprising interior permanent magnets, air barriers and steel bridges are substituted by equivalent air-gap. The expressions of the magnetic induction created by current of the stator windings at each point of the air gap as well as of magnetic flux linkage of the stator windings have been obtained. The equations of the self-inductances of phases A, B, C, and of inductance of mutual induction are determined from magnetic flux linkage. The inductance of the d and q axes have been obtained as a result of transformation of the axes abc-dq. The results obtained with the use of the proposed analytical method and the finite element method are presented in the form of a graph; the calculations that have been obtained by these two methods were compared.

Key words: permanent magnet synchronous motor, equivalent sinusoidal windings, equivalent salient rotor, inductance

For citation: Ngo Phuong Le (2017) Calculation of Inductance of the Interior Permanent Magnet Synchronous Motor. *Energetika. Proc. CIS Higher Educ. Inst. and Power Eng. Assoc.* 60 (2), 133–146. DOI: 10.21122/1029-7448-2017-60-2-133-146 (in Russian)

Введение

Синхронные двигатели с постоянными магнитами (СДПМ) обладают рядом преимуществ, таких как: отсутствие обмотки возбуждения на роторе, что обеспечивает уменьшение электрических потерь, повышение КПД и улучшение условий охлаждения двигателя; высокое отношение максимального допустимого момента к моменту инерции двигателя – что предпочтительно для применения в быстродействующем электроприводе; лучшие массогабаритные показатели, что характеризуется высоким отношением номинальной мощности к массе двигателя. В системах электропривода используются различные виды СДПМ, отличающиеся конструктивным исполнением ротора. Все многообразие можно объединить двумя особенностями: с расположением постоянных магнитов (ПМ) на поверхности ротора – поверхностные (СДИПМ) и с внутренним расположением ПМ в роторе – инкорпорированные (СДИПМ).

В отличие от СДППМ, которые имеют одинаковые значения индуктивностей в продольной (d) и поперечной (q) осях, СДИПМ обладают различными продольными и поперечными индуктивностями, что приводит к возникновению реактивной составляющей электромагнитного момента. Реактивный момент позволяет СДИПМ регулировать его скорость выше номинальной, что важно для применения в тяговом электроприводе при регулировании скорости в режиме постоянной мощности. Для определения реактивного момента СДИПМ необходимо вычислить продольную и поперечную индуктивности.

В последнее время для расчета индуктивностей СДИПМ с высокой точностью применяется метод конечных элементов (МКЭ), реализуемый на компьютере [1, 2]. Однако МКЭ требует больших вычислительных затрат. Аналитический расчет целесообразно применять в предварительных расчетах. Разработан аналитический метод расчета индуктивностей СДИПМ, в котором распределенные обмотки статора заменяются синусными, а в роторе участки магнитной цепи, содержащей постоянные магниты, воздушные барьеры и стальные мосты, замещены эквивалентным воздушным зазором.

Эквивалентная синусная обмотка

Рассмотрим обмотку одной фазы СДИПМ. Она представляет собой распределенную обмотку, содержащую p групп катушек, соединенных последовательно. Каждая группа катушек содержит q катушек, соединенных последовательно. Ротор с инкорпорированными магнитами имеет p пар полюсов. Схема СДИПМ в случае p = 2 и q = 2 представлена на рис. 1.

Рис. 1. Схема синхронного двигателя с инкорпорированными постоянными магнитами, p = 2 и q = 2: θ_r – угол перемещения ротора; ϕ_s – угол между началом отсчета и рассматриваемой точкой на статоре; ϕ_r – то же на роторе

Fig. 1. The scheme of a synchronous motor with permanent magnets incorporated, p = 2 and q = 2: θ_r – angle of displacement of the rotor; ϕ_s – angle between the reference point and the considered point on the stator; ϕ_r – angle between the reference point and the considered point on the rotor

Значение ϕ_r можно выразить через θ_r и ϕ_s

$$\phi_r = \phi_s - \theta_r$$
.

Распределение магнитодвижущей силы (МДС) одной фазы и ее первая гармоника показаны на рис. 2

Магнитодвижущая сила одной фазы представляется в виде суммы членов гармонического ряда [3, 4]

$$F_{\phi}(\phi_s) = \sum_{v=1}^{\infty} F_{\phi v m} \cos v p \phi_s.$$
⁽¹⁾

Амплитуда v-й гармонической составляющей [3]

$$F_{\phi vm} = \frac{4q}{\pi \upsilon} \frac{iw_k}{2} k_{y\upsilon} k_{pv}, \qquad (2)$$

где $k_{yv} = \sin \frac{v \alpha_y}{2}$ – коэффициент укорочения шага обмотки для *v*-й гармонической составляющей, характеризующий влияние шага катушки α_y на амплитуды гармоник МДС; $k_{pv} = \frac{\sin \frac{\upsilon \pi}{2m}}{q \sin \frac{\upsilon \pi}{2ma}}$ – коэффициент распределе-

ния для *v*-й гармонической составляющей; *i* – ток, протекающий в катушке; *w_k* – число витков катушки; *m* – число фаз.

Puc. 2. Распределение магнитодвижущей силы *Fig.* 2. The distribution of magnetomotive force

С ростом q обмоточный коэффициент распределения k_{pv} для основной гармонической составляющей уменьшается несущественно. В то же время обмоточные коэффициенты для высших гармонических составляющих резко снижаются. Распределение обмотки по нескольким пазам ослабляет высшие гармонические составляющие в кривой результирующей МДС и улучшает форму поля в воздушном зазоре, приближая ее к синусоиде.

Если пренебречь высшими гармоническими составляющими и допустить, что распределение МДС имеет синусоидальный вид, то получим

$$F_{\phi}(\phi_s) = F_{\phi_{1m}} \cos(p\phi_s) = \frac{4q}{\pi} \frac{iw_k}{2} k_{y_1} k_{p_1} \cos(p\phi_s) = \frac{iw_{rp}}{2} \cos(p\phi_s), \qquad (3)$$

где $w_{\rm rp} = \frac{4q}{\pi} w_k k_{\rm yl} k_{\rm pl}$ – эквивалентное число витков группы катушки с уче-

том укорочения шага и распределения обмотки.

Синусоидальное распределение МДС теоретически обеспечивается синусными обмотками, в которых витки распределяются по закону синуса [5, 6]. Число витков группы катушки фаз выражается по закону синуса

$$w(\phi_s) = \frac{pw_{\rm rp}}{2} |\sin(p\phi_s)|. \tag{4}$$

Синусная обмотка и синусоидальная МДС в зазоре представлены на рис. 3.

Рис. 3. Синусоидальное распределение: а – магнитодвижущая сила от эквивалентной обмотки; b – эквивалентная распределенная обмотка

Fig. 3. The sinusoidal distribution: a – magnetomotive force from the equivalent winding; b – equivalent distributed winding

Эквивалентный явнополюсный ротор

Ротор с инкорпорированными магнитами обладает сложной структурой, содержащей постоянные магниты, воздушные барьеры и стальные мосты. Вследствие этого аналитический расчет собственных индуктивностей и индуктивностей взаимоиндукции обмотки достаточно сложный. Для упрощения расчета предлагается заменить реальный ротор (рис. 4а) эквивалентным ротором (рис. 4b), в котором постоянные магниты, воздушные барьеры и стальные мосты замещены эквивалентным воздушным зазором.

Рис. 4. а – ротор с инкорпорированными магнитами; b – эквивалентный явнополюсный ротор

Fig. 4. a – rotor with magnets incorporated; b – equivalent salient-pole rotor

Замещение осуществляется на основе того, что постоянные магниты и насыщенные стальные мосты имеют магнитную проницаемость для магнитного потока со стороны статора, практически равную магнитной проницаемости воздуха [6–8]. Схема эквивалентного воздушного зазора приведена на рис. 5.

Puc. 5. Схема эквивалентного воздушного зазора *Fig. 5.* The scheme of the equivalent air gap

Эквивалентный воздушный зазор описывается функцией:

$$\delta(\phi_r) = \delta_{\max} \quad \Pi p \mu - \frac{\gamma_M}{2p} \le \phi_r \le \frac{\gamma_M}{2p};$$

$$\delta(\phi_r) = \delta_{\min} \quad \Pi p \mu - \frac{\pi}{2p} \le \phi_r \le -\frac{\gamma_M}{2p} \quad \mu \quad \frac{\gamma_M}{2p} \le \phi_r \le \frac{\pi}{2p},$$
(5)

где δ_{min} , δ_{max} – минимальное и максимальное значение эквивалентного воздушного зазора.

Показатель δ_{min} определяется из выражения

$$\delta_{\min} = l_{\delta}' = l_{\delta}k_c,$$

где $l'_{\delta} = k_c l_{\delta}$ – длина эквивалентного воздушного зазора с учетом влияния зубцов статора; k_c – коэффициент Картера.

Значения δ_{max} находится из формулы

$$\delta_{\max} = l_{\delta}' + \frac{\mu_0 w_{\delta} l_{M}}{P_{M} + P_{\text{cr.M}} + P_{B}}$$

где $w_{\delta} = \frac{\gamma_{\rm M} r}{p}$ – ширина угла открытия магнитов; $\gamma_{\rm M}$ – угол открытия посто-

янных магнитов; r – средний радиус зазора; $l_{\rm M}$ – длина магнита по направлению магнитной индукции; μ_0 – магнитная проницаемость воздуха; $P_{\rm M}$ – то же постоянных магнитов; $P_{\rm ct.M}$ – то же стальных мостов; P_B – общая магнитная проводимость барьеров.

Значения *P*_м, *P*_{ст.м}, *P*_B определяются исходя из геометрических размеров постоянных магнитов и их расположения в роторе [9].

Магнитная проводимость постоянных магнитов

$$P_{\rm M}=2\mu_{\rm M}\mu_0\frac{w_{\rm M}l_{\rm p}}{l_{\rm M}},$$

где $w_{\rm M}$ – ширина магнита; $l_{\rm p}$ – длина ротора; $\mu_{\rm M}$ – относительная магнитная проницаемость магнита.

Магнитная проводимость барьеров

$$P_B=P_{b1}+P_{b2}+\ldots+P_{bi},$$

где P_{b1} , P_{b2} , ..., P_{bi} – магнитная проводимость каждого барьера, $P_{bi} = \frac{\mu_0 w_{bi} l_p}{l_{bi}}$; w_{bi} , l_{bi} – ширина и длина барьера.

Магнитная проводимость стальных мостов

$$P_{\rm ct.M} = \frac{\mu_0 2 w_{\rm ct.M} l_{\rm p}}{l_{\rm ct.M}},$$

где *w*_{ст.м}, *l*_{ст.м} – ширина и длина стального моста.

Представим коэффициент удельной магнитной проводимости λ(φ_r)

в виде
$$\lambda(\phi_r) = \frac{1}{\delta(\phi_r)}$$
. Подставив (5) в $\lambda(\phi_r) = \frac{1}{\delta(\phi_r)}$, получим:
 $\lambda(\phi_r) = \frac{1}{\delta_{\max}} \operatorname{прu} - \frac{\gamma_M}{2p} \le \phi_r \le \frac{\gamma_M}{2p};$
 $\lambda(\phi_r) = \frac{1}{\delta_{\min}} \operatorname{пpu} - \frac{\pi}{2p} \le \phi_r \le -\frac{\gamma_M}{2p} \operatorname{u} \frac{\gamma_M}{2p} \le \phi_r \le \frac{\pi}{2p}.$
(6)

Функцию $\lambda(\phi_r)$ представим в виде ряда Фурье

$$\lambda(\phi_r) = \lambda_0 + \sum_{n=1}^{\infty} \lambda_n \cos 2np \phi_r, \qquad (7)$$

где

$$\lambda_{0} = \frac{1}{\pi} \left(\frac{\gamma_{M}}{\delta_{\max}} + \frac{\pi - \gamma_{M}}{\delta_{\min}} \right);$$
$$\lambda_{n} = \frac{2}{\pi n} \sin n \gamma_{M} \left(\frac{1}{\delta_{\max}} - \frac{1}{\delta_{\min}} \right).$$

Расчет собственных индуктивностей и индуктивностей взаимоиндукции

Для расчета собственных индуктивностей и индуктивностей взаимоиндукции обмоток статора СДИПМ заменим трехфазные распределенные обмотки статора синусными в соответствии с параграфом данной статьи «Эквивалентная синусная обмотка», а ротор с инкорпорированными магнитами – эквивалентным явнополюсным ротором в соответствии с параграфом «Эквивалентный явнополюсный ротор». Диаграммы синусоидального распределения МДС, эквивалентных синусных обмоток и также эквивалентной длины воздушного зазора трехфазного СДИПМ представлены на рис. 6.

Рис. 6. Распределение магнитодвижущей силы, число витков обмотки фазы и длина зазора Fig. 6. The distribution of the magnetomotive force, the number of turns of the phase winding and the length of the gap

Обмотки фаз A, B, C замещены эквивалентными синусными обмотками, у которых число витков представлено по закону синуса:

$$w_A(\phi_s) = \frac{p w_{\rm rp}}{2} |\sin(p \phi_s)|; \qquad (8)$$

$$w_B(\phi_s) = \frac{pw_{\rm rp}}{2} \left| \sin\left(p\phi_s - \frac{2\pi}{3} \right) \right|; \tag{9}$$

$$w_{C}\left(\phi_{s}\right) = \frac{pw_{rp}}{2} \left| \sin\left(p\phi_{s} + \frac{2\pi}{3}\right) \right|.$$
(10)

Распределение МДС, создаваемое током фаз A, B, C, определяется по формулам:

$$F_{\phi A}(\phi_s) = \frac{i_A w_{\rm rp}}{2} \cos(p\phi_s); \qquad (11)$$

$$F_{\phi B}\left(\phi_{s}\right) = \frac{i_{B}w_{\rm rp}}{2}\cos\left(p\phi_{s} - \frac{2\pi}{3}\right); \tag{12}$$

$$F_{\phi C}\left(\phi_{s}\right) = \frac{i_{C} w_{\rm rp}}{2} \cos\left(p\phi_{s} + \frac{2\pi}{3}\right),\tag{13}$$

где i_A , i_B , i_C – ток фаз A, B, C.

При угле перемещения ротора θ_r в точке ϕ_s длина эквивалентного воздушного зазора имеет значение $\delta(\phi_s - \theta_r)$. Значение напряженности магнитного поля, создаваемой током фазы *A* в точке ϕ_s [3]:

$$H_{\delta A}\left(\phi_{s},\theta_{r}\right)=\frac{F_{\phi A}\left(\phi_{s}\right)}{\delta\left(\phi_{s}-\theta_{r}\right)}.$$

Магнитная индукция, создаваемая током фазы А в точке ф.:

$$B_{\delta A}\left(\phi_{s},\theta_{r}\right) = \mu_{0}H_{\delta A}\left(\phi_{s},\theta_{r}\right) = \mu_{0}\frac{F_{\phi A}\left(\phi_{s}\right)}{\delta\left(\phi_{s}-\theta_{r}\right)}.$$
(14)

Подставив $\delta(\phi_s - \theta_r) = \frac{1}{\lambda(\phi_s - \theta_r)}$ и (11) в (14), получим:

$$B_{\delta A}(\phi_{s},\theta_{r}) = \mu_{0} \frac{i_{A} w_{\rm rp}}{2} \cos(p\phi_{s}) \lambda(\phi_{s}-\theta_{r}).$$
(15)

Аналогично найдем магнитную индукцию, создаваемую током фаз *B*, *C*:

$$B_{\delta B}(\phi_s, \theta_r) = \mu_0 \frac{i_B w_{\rm rp}}{2} \cos\left(p\phi_s - \frac{2\pi}{3}\right) \lambda(\phi_s - \theta_r); \qquad (16)$$

$$B_{\delta C}\left(\phi_{s},\theta_{r}\right) = \mu_{0} \frac{i_{C} w_{rp}}{2} \cos\left(p\phi_{s} + \frac{2\pi}{3}\right) \lambda\left(\phi_{s} - \theta_{r}\right).$$
(17)

Магнитный поток, создаваемый током фазы *A*, пронизывающий через поверхность ротора от угла ϕ_s до угла $\phi_s + \frac{\pi}{p}$:

$$\Phi_{A}\left(\phi_{s},\theta_{r}\right) = \int_{\phi_{s}}^{\phi_{s}+\frac{\pi}{p}} B_{\delta A}\left(\phi_{s},\theta_{r}\right) r l_{p} d\phi_{s}, \qquad (18)$$

где *r* – средний радиус воздушного зазора.

Поставив (15) в (18), получим:

$$\Phi_{A}(\phi_{s},\theta_{r}) = \mu_{0} \frac{i_{A} w_{rp}}{2} r l_{p} \int_{\phi_{s}}^{\phi_{s}+\frac{\pi}{p}} \cos(p\phi_{s}) \lambda(\phi_{s}-\theta_{r}) d\phi_{s}.$$
(19)

Аналогично магнитный поток, создаваемый током фаз *B*, *C* и пронизывающий через поверхность ротора от угла ϕ_s до угла $\phi_s + \frac{\pi}{n}$:

$$\Phi_B(\phi_s,\theta_r) = \mu_0 \frac{i_B w_{\rm rp}}{2} r l_p \int_{\phi_s}^{\phi_s + \frac{\pi}{p}} \cos\left(p\phi_s - \frac{2\pi}{3}\right) \lambda(\phi_s - \theta_r) d\phi_s; \qquad (20)$$

$$\Phi_{C}\left(\phi_{s},\theta_{r}\right) = \mu_{0}\frac{i_{C}w_{rp}}{2}rl_{p}\int_{\phi_{s}}^{\phi_{s}+\frac{\pi}{p}}\cos\left(p\phi_{s}+\frac{2\pi}{3}\right)\lambda\left(\phi_{s}-\theta_{r}\right)d\phi_{s}.$$
 (21)

Для расчета собственной индуктивности фазы *А* определим потокосцепление от магнитного потока, создаваемого током фазы *А*, на обмотку фазы *А*

$$\psi_{AA}\left(\theta_{r}\right) = L_{0}i_{A} + p \int_{\frac{\pi}{p}}^{\frac{2\pi}{p}} w_{A}\left(\phi_{s}\right) \Phi_{A}\left(\phi_{s}, \theta_{r}\right) d\phi_{s}, \qquad (22)$$

где L_0 – индуктивность рассеяния обмотки.

Подставив (8), (18) и (7) в (22), проинтегрировав, получим

$$\psi_{AA}\left(\theta_{r}\right) = L_{0}i_{A} + i_{A}\left(\frac{w_{rp}}{2}\right)^{2}\pi\mu_{0}rl_{p}\left(\lambda_{0} + \frac{1}{2}\lambda_{1}\cos\left(2\,p\theta_{r}\right)\right).$$
(23)

Надо отметить, что в (23) отсутствуют все гармонические составляющие выше первой у $\lambda(\phi_r)$ благодаря синусной функции $w_A(\phi_s)$.

Собственная индуктивность фазы А

$$L_{AA}(\theta_r) = \frac{\psi_{AA}(\theta_r)}{i_A} = L_0 + \left(\frac{w_{rp}}{2}\right)^2 \pi \mu_0 r l_p \left(\lambda_0 + \frac{1}{2}\lambda_1 \cos(2p\theta_r)\right).$$

Для расчета взаимоиндукции от обмотки фазы B на обмотку фазы A нужно определить потокосцепление от магнитного потока, созданного током фазы B на обмотку фазы A

$$\psi_{AB}\left(\theta_{r}\right) = p \int_{\frac{\pi}{p}}^{\frac{2\pi}{p}} w_{A}\left(\phi_{s}\right) \Phi_{B}\left(\phi_{s},\theta_{r}\right) d\phi_{s}.$$
(24)

Подставив (8), (20) и (7) в (24), проинтегрировав, получим

$$\psi_{AB}\left(\phi_{r}\right) = i_{B}\left(\frac{w_{rp}}{2}\right)^{2} \pi\mu_{0}rl_{p}\frac{1}{2}\left(-\lambda_{0} + \lambda_{1}\cos\left(2p\theta_{r} - \frac{2\pi}{3}\right)\right).$$
(25)

Взаимоиндукция от фазы В на фазу А

$$M_{AB}\left(\theta_{r}\right) = \frac{\Psi_{AB}\left(\theta_{r}\right)}{i_{B}} = \frac{1}{2} \left(\frac{w_{rp}}{2}\right)^{2} \pi \mu_{0} r l_{p} \left(-\lambda_{0} + \lambda_{1} \cos\left(2p\theta_{r} - \frac{2\pi}{3}\right)\right).$$

Остальные потокосцепления, собственные индуктивности и взаимоиндукции определяются аналогичным образом. Если обозначим:

$$L_{1} = \left(\frac{w_{\rm rp}}{2}\right)^{2} \pi \mu_{0} r l_{\rm p} \lambda_{0};$$
$$L_{2} = -\frac{1}{2} \left(\frac{w_{\rm rp}}{2}\right)^{2} \pi \mu_{0} r l_{\rm p} \lambda_{1},$$

то получим компактный вид собственных индуктивностей и взаимоиндукций:

$$L_{AA}\left(\theta_{r}\right) = L_{0} + L_{1} - L_{2}\cos\left(2\,p\theta_{r}\right); \qquad (26)$$

$$L_{BB}(\theta_{r}) = L_{0} + L_{1} - L_{2}\cos 2\left(p\theta_{r} - \frac{2\pi}{3}\right);$$
(27)

$$L_{CC}\left(\theta_{r}\right) = L_{0} + L_{1} - L_{2}\cos 2\left(p\theta_{r} + \frac{2\pi}{3}\right);$$
(28)

$$M_{AB}\left(\theta_{r}\right) = M_{BA}\left(\theta_{r}\right) = -\frac{1}{2}L_{1} - L_{2}\cos\left(p\theta_{r} - \frac{\pi}{3}\right);$$
(29)

$$M_{AC}\left(\theta_{r}\right) = M_{CA}\left(\theta_{r}\right) = -\frac{1}{2}L_{1} - L_{2}\cos\left(p\theta_{r} + \frac{\pi}{3}\right);$$
(30)

$$M_{BC}(\theta_r) = M_{CB}(\theta_r) = -\frac{1}{2}L_1 - L_2\cos^2(p\theta_r).$$
(31)

Обозначим матрицу индуктивностей по осям abc

$$L_{s} = \begin{bmatrix} L_{A}(\theta_{r}) & M_{AB}(\theta_{r}) & M_{AC}(\theta_{r}) \\ M_{BA}(\theta_{r}) & L_{B}(\theta_{r}) & M_{BC}(\theta_{r}) \\ M_{CA}(\theta_{r}) & M_{CB}(\theta_{r}) & L_{C}(\theta_{r}) \end{bmatrix}.$$
(32)

Матрица индуктивностей по осям *dq* получается путем преобразования матрицы индуктивностей по осям *abc* на оси *dq* [10]

$$L_{dq} = K_s L_s K_s^{-1}, aga{33}$$

где $L_{dq} = \begin{bmatrix} L_d & L_q & 0 \end{bmatrix}^T$ – матрица индуктивностей по осям dq; K_s – матрица преобразования по осям *abc* на dq:

$$K_{s} = \frac{2}{3} \begin{bmatrix} \cos\theta_{r} & \cos\left(\theta_{r} - \frac{2\pi}{3}\right) & \cos\left(\theta_{r} + \frac{2\pi}{3}\right) \\ -\sin\theta_{r} & -\sin\left(\theta_{r} - \frac{2\pi}{3}\right) & -\sin\left(\theta_{r} + \frac{2\pi}{3}\right) \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix};$$
(34)

 K_s^{-1} – матрица обратного преобразования, также обратная матрица к K_s . Подставим (26)–(32), (34) в (33) и получим индуктивности по осям *d* и *q*:

$$L_{d} = L_{0} + \frac{3}{2}L_{1} - \frac{3}{2}L_{2};$$
$$L_{q} = L_{0} + \frac{3}{2}L_{1} + \frac{3}{2}L_{2};$$

На основе полученного метода проведен аналитический расчет индуктивностей для СДИПМ. Расчет индуктивностей СДИПМ также осуществлен методом конечных элементов с помощью программы FEMM. При вычислениях пренебрегали индуктивностью рассеяния обмотки $L_0 = 0$. Сравнение результатов расчета двумя методами представлено на рис. 7. Индуктивности L_d , L_q , рассчитываемые аналитическим методом, не зависят от тока статора и изображены штриховыми линиями. Индуктивности L_d , L_q , рассчитываемые методом конечных элементов, изображены сплошными линиями. Так как индуктивность L_d практически не зависит от тока статора, отличие между аналитическим расчетом и методом конечных элементов незначительно и не превышает 10 % (рис. 7а). Расходимость результатов аналитического расчета и МКЭ индуктивности L_d можно объяснить отсутствием учета насыщения ферромагнитных участков магнитной цепи. Однако значения момента, рассчитываемого МКЭ и аналитическим методом, при небольшом токе статора практически совпадают (рис. 7b).

Рис. 7. Сравнение разработанной аналитической методики и метода конечных элементов: $a - индуктивности L_d, L_q$ в зависимости от тока статора;

 b – момент в зависимости от тока статора; штриховая линия – расчет аналитическим методом; сплошная линия – расчет методом конечных элементов

Fig. 7. Comparison of the analytical methods that have been developed and the finite element method: a – inductance of L_d, L_q depending on the stator current;
b – torque depending on the stator current; dashed line – an analytical solution;

solid line – a calculation by finite element method

вывод

1. Получены математические выражения, позволяющие заместить ротор с инкорпорированными постоянными магнитами эквивалентным явнополюсным ротором.

2. Разработана методика расчета индуктивностей и взаимоиндукции для синхронного двигателя с инкорпорированными постоянными магнитами на основе понятия эквивалентной синусной обмотки и эквивалентного воздушного зазора.

3. Осуществлен сравнительный анализ результатов разработанного аналитического метода и метода конечных элементов. Погрешность расчета аналитическим методом не превышает 10 % по сравнению с методом конечных элементов.

ЛИТЕРАТУРА

- Silvester, P. P. Finite Elements for Electrical Engineers / P. P. Silvester, R. L. Ferrari. 3rd ed. New York: Cambridge University Press, 1996. 514 p. DOI: 10.1017/CBO9781 139170611.
- Буль, О. Б. Методы расчета магнитных систем электрических аппаратов: магнитные цепи, поле и программа FEMM / О. Б. Буль. М.: Издательский центр «Академия», 2005. 336 с.
- 3. Иванов-Смоленский, А. В. Электрические машины / А. В. Иванов-Смоленский. М.: Энергия, 1980. 928 с.

- 4. Вольдек, А. И. Электрические машины / А. И. Вольдек. 3-е изд., перераб. Л.: Энергия, 1978. 832 с.
- Paul, C. Krause. Analysis of Electric Machinary and Drive System / C. Krause Paul, O. Wasunczuk, D. Sunhoff Scott. 2nd. New York: IEEE Press, 2002. 613 p. DOI: 10.1109/9780470544167.
- Miller, T. J. E. Brushless Permanent Magnet and Reluctance Motor Drive / T. J. E. Miller. New York; Oxford: Clarendon Press, 1989. 207 p.
- Gieras, J. F. Permanent Magnet Motor Technology Design / J. F. Gieras, M. Wing. New York: Marcel Dekker, 2002. 590 p.
- Ледовский, А. Н. Электрические машины с высококоэрцитивными постоянными магнитами / А. Н. Ледовский. М.: Энергоатомиздат, 1985. 168 с.
- Нго, Фыонг Ле. Эквивалентная схема магнитной цепи синхронного двигателя с инкорпорированными магнитами / Фыонг Ле Нго, Г. И. Гульков // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2015. № 4. С. 13–24.
- 10. Фираго, Б. И. Теория электропривода: учеб. пособие для вузов / Б. И. Фираго, Л. Б Павлячик. 2-е изд. Минск: Техноперспектива, 2007. 585 с.

Поступила 17.11.2016 Подписана в печать 21.01.2017 Опубликована онлайн 07.03.2017

REFERENCES

- 1. Silvester P. P., Ferrari R. L. (1996) *Finite Elements for Electrical Engineers*. 3rd ed. New York, Cambridge University Press. 514. DOI: 10.1017/CBO9781139170611.
- 2. Bul O. B. (2005) *Methods of Calculation of Magnetic Systems of Electrical Machines: Magnetic Circuits, the Field and the FEMM Program.* Moscow, Academia Publishing Center. 336 (in Russian).
- 3. Ivanov-Smolenskiy A. V. (1980) *Electrical Machines*. Moscow, Energiya Publ. 928 (in Russian).
- 4. Voldek A. I. (1978) Electrical Machines. 3rd ed. Leningrad, Energiya Publ. 832 (in Russian).
- Paul C. Krause, Wasunczuk O., Sunhoff D. Scott (2002) Analysis of Electric Machinery and Drive System. 2nd ed. New York, IEEE Press. 613. DOI: 10.1109/9780470544167.
- Miller T. J. E. (1989) Brushless Permanent Magnet and Reluctance Motor Drive. New York, Clarendon Press. 207.
- 7. Gieras J. F., Wing M. (2002) *Permanent Magnet Motor Technology Design*. New York, Marcel Dekker. 590.
- 8. Ledovskii A. N. (1985) *Electrical Machines with Highly Coercive Permanent Magnets*. Moscow, Energoatomizdat. 168 (in Russian).
- Ngo Fyong Le, Gulkov G. I. (2015) Magnetic Circuit Equivalent of the Synchronous Motor with Incorporated Magnets. *Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Obedinenii SNG* [Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations], (4), 13–24 (in Russian).
- Firago B. I., Pavlyachik L. B. (2007) *Electric Drive Theory*. Minsk, Tekhnoperspektiva Publ. 585. (in Russian).

Received: 17 November 2016 Accepted: 21 January 2017 Published online: 7 March 2017