Расчет гидродинамической силы, действующей на клапан

Кишкевич П.Н., Бартош П.Р., Мурашкевич В.В. Белорусский национальный технический университет

При течении рабочей среды между клапаном и его седлом возникает гидродинамическая сила, действующая на клапан. Формы клапанов могут быть различными. От этих форм зависят углы, под которыми истекает рабочая среда. В процессе исследования рассматривались три формы клапана. Поэтому получались углы истечения струи:

 $\alpha_{_{\kappa\eta}} \prec 90^{0}; \alpha_{_{\kappa\eta}} \succ 90^{0}; \alpha_{_{\kappa\eta}} = 69^{0}.$ $\alpha_{_{\kappa\eta}}$ - угол между осями основного отклоненного потоков.

Используя теорему сохранения количества движения можно получить уравнение для определения гидродинамической силы при установившемся движении рабочей среды:

$$F_{\Gamma \Pi} = (p_{\Pi} - p_2)A_{\Pi} + m_{\kappa \pi}(V_1 - V_2 Cos\alpha_{\kappa \pi})$$

где $F_{{\scriptscriptstyle \Gamma}{\scriptscriptstyle I}{\scriptscriptstyle I}}$ - скорость рабочей среды в подводном канале диаметром $d_{{\scriptscriptstyle I}}$.

$$V_1 = 4 p_{_{\theta}} m_{_{KI}} / \pi d_{_{II}}^{2}$$

 p_{Π} и p_2 - давления среды до и после клапана; A_{Π} – площадь подводного канала клапана; $m_{\kappa\pi}$ - массовый расход среды, пропускаемой клапаном; V_1 и V_2 - скорости среды перед подводным каналом и на выходе его.

Давление p_2 можно определить из уравнения:

$$V_2 = \sqrt{\frac{\kappa}{RT_{II}}} P_{II} A \frac{p_{II} - p_2}{B_{II} - p_2}$$

где $\kappa=1,4;\ R$ — газовая постоянная; T_{II} — температура; A и B - постоянные коэффициенты.

Массовый расход:

$$m_{\kappa n} = M_{\kappa n} A_{\kappa n} = \sqrt{\frac{\kappa}{RT_{II}}} P_{II} A \frac{p_{II} - p_2}{Bp_{II} - p_2}$$

Установлено, что смена режимов течения приводит к периодическому изменению величины гидродинамической силы, что сопровождается колебаниями клапана.