УДК 621.432

Перспективные методы утилизации теплоты, применимые для ДВС

Ивандиков М.П. Белорусский национальный технический университет

В данной работе рассматриваются мероприятия, методы и устройства по утилизации тепловых потерь двигателей внутреннего сгорания для повышения его теплового КПД.

В таблице 1 представлены объекты, использующие ДВС, методы и устройства преобразования потерь теплоты ДВС в различные виды энергии. Таблица 1

таолица т					
$N_{\underline{0}}$	Назначе-	Механическая энергия	Электрическая	Тепловая	Гид-
	ние двига-		энергия	энергия	рав-
	теля / ав-				личе-
	томобиля				ская
					энер.
1	Стацио-	Турбонаддув для фор-	Генератор-	Обогрев	
	нарная	сирования ДВС	основное на-	помещения,	
	установка-		значение	водопровода	
	электроге- Турбины от энергии ОГ				
	нератор				
2	Авто-	Турбонаддув для фор-	Генератор для	Обогрев	
	трактор-	сирования ДВС	нужд ДВС и	салона	
	ная тех-		освещения		
	ника	Торможение двигате-	Термопары,		
		лем - рекуперация	устройства		
		энергии	Пельтье для		
		_	утилизации ОГ		
		"Паровая машина"			
		Цикл Сттирлинга			
		Циклы с более полным			
		расширением (напри-			
		мер, Аткинсона)			
3	Гибридная	Турбонаддув для фор-	Генератор для	Обогрев	Hacoc
	трансмис-	сирования ДВС	накопления	салона	
	сия		энергии		

При разработке устройств утилизации тепловых потерь для существующих ДВС возможно конструктивное исполнение ридельных устройств в виде дополнительных опций.

При создании новых ДВС возможна более полная утилизация тепловых потерь за счет встроенных различных устройств.