(один из шариков подшипника полярно намагничен). С помощью описанного устройства были получены зависимости колебания угла контакта от осевой нагрузки и параметров ультразвуковых колебаний. Результаты измерений в виде графиков зависимостей отношения $\omega_{\rm B}$: $\omega_{\rm k}$ от осевой нагрузки и параметров ультразвуковых колебаний показаны на рисунке 3.

Из графиков видно, что при увеличении амплитуды и частоты колебаний величина $\omega_{\rm B}$: $\omega_{\rm K}$ уменьшается, что можно объяснить увеличивающимся проскальзыванием шариков в местах контакта. При увеличении осевой нагрузки величина $\omega_{\rm B}$: $\omega_{\rm K}$ также уменьшается, что связано с увеличением угла контакта.

Вместе с тем, снижение измеренного соотношения скоростей относительно невелико. Поэтому можно сделать вывод о том, что при управлении кинематикой можно пренебречь изменением угла контакта. При этом действительные кинематические соотношения в подшипнике будут незначительно отличаться от расчетных.

- 1. Филонов, И. П. Механика процессов обкатки / И. П. Филонов; под ред. П. И. Ящерицына. – Минск : Наука и техника, 1985. – 328 с.
- 2. Бочков, В. С. Исследование кинематики радиально-упорного подшипника / В.С. Бочков, Б. Л. Каневский // Сб. науч. тр. / Всесоюзный научно-исследовательский конструкторско-технологический институт подшипниковой промышленности. М., 1971. №1(65). С. 3 34.
- 3. Савченко, А.Л. Восстановление точностных параметров радиально-упорных шарикоподшипников / А.Л. Савченко, Н.Т. Минченя // Вестник Полоцкого государственного университета. Сер. В, Прикладные науки. 2005. №6. С. 93 97.

УДК 538.2; 620.179.14

АНАЛИЗ ИЗМЕНЕНИЙ ОСТАТОЧНОЙ НАМАГНИЧЕННОСТИ СТАЛЕЙ НА ЧАСТНЫХ ПЕТЛЯХ МАГНИТНОГО ГИСТЕРЕЗИСА ПРИ РАЗНОЙ ТЕРМИЧЕСКОЙ ОБРАБОТКЕ

Сандомирский С.Г.

Объединенный институт машиностроения НАН Беларуси Минск, Республика Беларусь

При изменении магнитного поля Н намагниченность М ферромагнитных сталей изменяется нелинейно и неоднозначно — по кривой намагничивания и петле гистерезиса (рис.1).

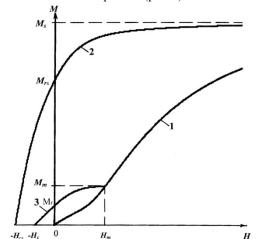


Рисунок 1. Основная кривая намагничивания (1) и нисходящие ветви предельной (2) и частной (3) петель магнитного гистерезиса стали

В магнитном структурном и фазовом анализе сталей используют результаты измерений параметров их предельной петли гистерезиса: коэрцитивной силы H_{cs} , намагниченности M_s технического насыщения, остаточной намагниченно-

сти $M_{\rm rs}$. Магнитным параметром, наиболее чувствительным к структурным изменениям в сталях, происходящих при их термических обработках, считается $H_{\rm cs}$. При структурных изменениях металла его $M_{\rm rs}$ изменяется в узких пределах [1]:

$$0.5M_s \le M_{rs} \le 0.866 \ M_s \qquad . \tag{1}$$

Но H_{cs} среднеуглеродистых сталей не однозначно изменяется в области средних и высоких температур T_o отпуска. Поэтому изменение M_{rs} таких сталей особенно важно.

Кроме того, стальные изделия обладают размагничивающим фактором [2]. Поэтому материал изделий в открытой магнитной цепи намагничивается по частным петлям магнитного гистерезиса, которые характеризуют максимальными напряженностью H_m намагничивающего поля и намагниченностью $M_{\rm m}$, коэрцитивной силой H_c и остаточной намагниченностью M_r (рис.1). Зависимости M_m , H_c и M_r сталей от изменений То не соответствуют зависимостям M_s , H_{cs} и M_{rs} тех же сталей от T_o . Так, в [3] определены условия намагничивания, при которых зависимость H_c сталей от их H_{cs} меняется с прямой на обратную.

Аналитическое описание связи остаточной намагниченности $M_{\rm r}$ сталей на частных петлях магнитного гистерезиса с их намагниченностью

 M_s технического насыщения, коэрцитивной силой H_{cs} и остаточной намагниченностью M_{rs} на предельной петле гистерезиса получено и обосновано в [4]:

$$M_{r} = \frac{M_{s}}{\pi} \frac{H_{m}^{2}}{H_{cs}^{2} + kH_{cs}^{2}} \{ \pi K_{s} - \sum_{n=0}^{1} arctg \ [T(1 + (-1)^{n} \frac{H_{m}}{H_{cs}})] \}$$

$$,(2) \qquad \qquad \Gamma \text{Ale: } K_{s} = M_{rs} / M_{s} ; T = tg(\pi \ K_{s} / 2);$$

$$k = \frac{M_{s} arctg \ (2T)}{\pi (M_{C} - \chi_{a} H_{cs} / 2)},$$

$$M_{C} \approx 0,67[0,5 + 0,06\tau H_{cs} - (0,068\tau H_{cs})^{2}] M_{rs} \quad (3)$$

$$\chi_{a} \approx \frac{[0,5 + 0,06\tau H_{cs} - (0,068\tau H_{cs})^{2}] M_{rs}}{(2,9 + 35e^{-1,75\tau H_{cs}}) H_{cs}} - 1$$

$$(4)$$

Применение формул (2) — (4) позволяет рассчитать значения M_r по H_{cs} , M_s и M_{rs} стали на предельной петле гистерезиса и величине H_m . Данные о H_{cs} , M_s и M_{rs} почти всех сталей приведены в справочной литературе.

В качестве примера реализации такой возможности на рис.2 приведены результаты расчета зависимостей M_r стали 30 от температуры T_o их отпуска после закалки. Для построения зависимостей $M_r(T_o)$ при разных H_m использованы формулы (2)-(4) и результаты измерения зависимостей $H_{cs}(T_o)$, $M_{rs}(T_o)$ и $M_s(T_o)$ стали 30 в [5, табл.1.1], приведенные в таблице.

Магнитные свойства (в кА/м) стали 30, отпущенной при разных T₀ после закалки

omymemou npu pasiibix 10 noesie sakasiku			
T _o ,°C	H_{cs}	M_s	M_{rs}
150	2,25	1591	870
200	2,10	1599	876
250	1,43	1644	970
300	1,22	1652	1007
350	1,13	1650	1070
400	0,995	1643	1145
450	0,873	1645	1248
500	0,876	1648	1265
550	0,866	1639	1277
600	0,834	1632	1280

Представленные на рис.2 данные на первый взгляд неожиданны. В соответствии с установившимися представлениями о характере изменения магнитных параметров среднеуглеродистых сталей о температуры их отпуска, зависимость $H_{cs}(T_o)$ стали 30 имеет не монотонный характер при $450^{\circ}\text{C} \leq T_o \leq 550^{\circ}\text{C}$ (таблица). Параметр M_s во всем диапазоне изменения T_o этих сталей изменяется не значительно и не монотонно. Это не позволяет использовать результаты измерения H_{cs} и M_s для контроля качества средне- и высокотемпературного отпуска стали 30. Параметр M_{rs} во всем диапазоне изменения T_o стали 30 изменяется монотонно. Это позволяет использовать результаты измерения M_{rs} стали 30

для контроля качества ее средне- и высокотемпературного отпуска. Но, в полном соответствии с (1) и [5], диапазон изменения $M_{\rm rs}$ не широк. Так, при изменении $T_{\rm o}$ стали 30 от 150°C до 600°C, $M_{\rm rs}$ этой стали изменяется всего в 1,47 раза. Это снижает достоверность контроля температуры отпуска стали 30 по результатам измерения ее $M_{\rm rs}$.

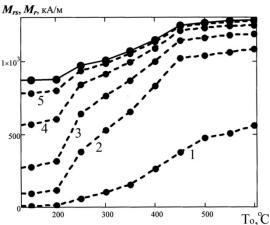


Рисунок 2. Зависимость остаточной намагниченности M_{rs} на предельной петле гистерезиса (сплошная кривая, результаты измерения в [5]) и остаточной намагниченности M_r на частной петле гистерезиса (пунктир, расчет по (2) – (4)) стали 30 от температуры T_o отпуска. 1-5- соответственно для H_m = 1; 2; 3; 5 и 10~ кА/м

При снижении напряженности H_m намагничивающего поля и измерении M_r стали 30 на частной петле гистерезиса диапазон изменения M_r радикально увеличивается (рис.2) при сохранении монотонности зависимости $M_r(T_o)$ во всем диапазоне изменения T_o . При изменении T_o стали 30 от 150° С до 600° С, M_r этой стали изменяется в 2,2 раза при $H_m = 5$ кА/м, в 4,34 раза при $H_m = 3$ кА/м, в 11,3 раза при $H_m = 2$ кА/м, в 66,1 раза при $H_m = 1$ кА/м. Отметим, что даже минимальная напряженность поля $H_m = 1$ кА/м в 20 раз превышает напряженность (≈ 50 А/м) поля Земли.

Многократное увеличение диапазона изменения М_г сталей, измеренной на частных петлях гистерезиса в относительно сильных намагничивающих полях по сравнению с диапазоном возможного изменения M_{rs} сталей, создает хорошие предпосылки для достоверного контроля качества отпуска среднеуглеродистых сталей по результатам измерения их остаточной намагниченности на частных петлях магнитного гистере-Для реализации такого контроля намагничивание стали и измерение ее М_г должно осуществляться в замкнутой магнитной цепи. Необходимо так же, что бы перед контролем изделия не подвергались магнитному воздействию и на операцию контроля поступали в термически

размагниченном состоянии — то есть непосредственно после закалки и отпуска. Должна быть обеспечена и стабильность напряженности $H_{\rm m}$ намагничивающего поля.

Выводы. Анализом зависимостей M_r сталей от температуры T_o отпуска установлено явление многократного расширения диапазона возможного изменения M_r сталей при структурных изменениях в них по мере снижения H_m по сравнению с диапазоном возможного изменениях. Это соответствуют физике перемагничивания ферромагнитного материала в слабых магнитных полях. На основе использования этого явления даны рекомендации по использованию остаточной намагниченности M_r сталей на частных петлях магнитного гистерезиса для магнитного структурного анализа.

1. Тикадзуми, С. Физика ферромагнетизма. Магнитные характеристики и практические

- применения / С. Тикадзуми // М.: Мир, 1987. 419 с.
- 2. Сандомирский, С. Г. Расчет и анализ размагничивающего фактора ферромагнитных тел / С.Г. Сандомирский // Мн.: Беларуская навука, 2015. 244 с.
- 3. Сандомирский, С. Г. Анализ структурной и фазовой чувствительности коэрцитивной силы частных петель гистерезиса сталей / С.Г. Сандомирский // Металлы. 2014. № 4. С.37 43.
- 4. Сандомирский, С.Г. Анализ влияния режимов термической обработки сталей на их остаточную намагниченность на частных петлях магнитного гистерезиса / С.Г. Сандомирский // Сталь. 2016. № 4. С.55 59.
- 5. Бида, Г.В. Магнитные свойства термообработанных сталей / Г.В. Бида, А.П. Ничипурук // Екатеринбург: УрО РАН, 2005. — 218 c

УДК 621.373.826

СПЕКТРОСКОПИЧЕСКИЕ СВОЙСТВА СТЕКЛОКРИСТАЛЛИЧЕСКИХ КОМПОЗИТОВ НА ОСНОВЕ ИТТРИЙ-АЛЮМИНИЕВЫХ БОРАТОВ С ИОНАМИ Yb^{3+} И Er^{3+}

Свибович И.В.¹, Курильчик С.В.¹, Горбаченя К.Н.¹, Кисель В.Э.¹, Напрасников Д.А.², Мальцев В.В.², Леонюк Н.И.², Кулешов Н.В.¹

¹Белорусский национальный технический университет Минск, Республика Беларусь ²Московский государственный университет им. М.В. Ломоносова Москва, Россия

В настоящее время наблюдается повышенный интерес к исследованию новых материалов, соактивированных ионами Er^{3+} и Yb^{3+} , для использования в качестве активных сред твердотельных лазеров спектрального диапазона 1,5-1,6 мкм. Излучение в этой области является относительно безопасным для зрения, соответствует области минимальных потерь в кварцевых волокнах (так называемое, «третье информационное окно»). Перспективными средами для таких лазеров являются новые стеклокристаллические композиты, сочетающие в себе свойства кристаллов и стекол.

В данной работе исследовались спектроскопические свойства новых стеклокристаллических композитов на основе кристалла иттрий-алюминиевого бората — $YAl_3(BO_3)_4$ — с ионами эрбия (Er^{3+}) и иттербия (Yb^{3+}) . Образцы для исследований были получены из монокристаллов путем их размалывания, добавления стеклообразующего компонента (оксида бора) и высокотемпературного прокаливания.

Измерение спектров поглощения для образца с содержанием ${\rm Er~0.8\times10^{20}~cm^{-3}}$ и Yb $5.8\times10^{20}~cm^{-3}$ производилось на двухлучевом спектрофотометре CARY 5000 для спектральных областей, соответствующих энергетическому переходу ионов иттербия ${}^2F_{7/2}{\to}^2F_{5/2}$ (рис. 1) и эрбия ${}^4I_{15/2}{\to}^4I_{13/2}$ (рис. 2).

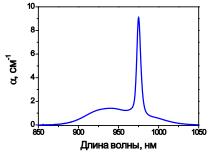


Рисунок 1 — Спектр коэффициента поглощения образца с содержанием ${\rm Er}~0.8{\times}10^{20}~{\rm cm}^{-3}$ и Yb $5.8{\times}10^{20}~{\rm cm}^{-3}$ в области $850{\text -}1050~{\rm hm}$

Измерение спектров люминесценции в области 1400-1690 нм производилось по методу синхронного детектирования при возбуждении