УДК 621.319.4

АНАЛИЗ ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ КОНДЕНСАЦИОННЫХ ТУРБИН ДЛЯ НУЖД ТЕПЛОФИКАЦИИ ГОРОДА

Пунько Р.Л.

Научные руководители – старший преподаватель Романко В.А., ассистент Павловская А.А.

Теплоснабжение является одной ИЗ основных подсистем энергетики. теплоснабжение народного хозяйства и населения расходуется около 1/3 всех используемых в стране первичных топливно-энергетических ресурсов. Основными направлениями совершенствования этой подсистемы являются концентрация комбинирование производства теплоты и электрической энергии (теплофикация) и централизация теплоснабжения.

Рассмотрим АЭС, как источник тепловой энергии на теплоснабжение города-спутника на примере города Нововоронежа. Определим тепловые нагрузки данного промышленно-жилого района.

Определение максимального расхода теплоты на отопление промышленных предприятий, общественных и жилых зданий

Расход теплоты на отопление промышленных предприятий определяется из выражения (1):

$$Q_{OT}^{IIP} = q \cdot V_{IIP} \cdot (t_{BH} - t_{HO}) \cdot 10^{-3} \text{ kBT},$$
 (1)

Максимальный расход теплоты на отопление производственных промышленных зданий вычисляется по формуле (2):

$$Q_{OT1}^{\Pi P} = q^{I} \cdot V_{\Pi P} \cdot (t_{BH} - t_{HO}) \cdot 10^{-3} = 0,7 \cdot 110000 \cdot (16 - (-25)) \cdot 10^{-3} = 3,157 \text{ MBt}.$$
 (2)

Максимальный расход теплоты на отопление непроизводственных промышленных зданий вычисляется по формуле:

$$Q_{OT2}^{IIP} = q^{II} \cdot V_{IIP} \cdot (t_{BH} - t_{HO}) \cdot 10^{-3} = 0,4 \cdot 110000 \cdot (16 - (-25)) \cdot 10^{-3} = 1,804 \text{ MBT}$$

Расход теплоты на отопление жилых зданий определяется с помощью выражения (3):

$$Q_{OT}^{\mathcal{K}UI} = q_0 \cdot F \cdot m \cdot 10^{-3} \text{ kBt}, \qquad (3)$$

q — укрупненный показатель максимального расхода теплоты на отопление зданий, ${\rm Bt/m^2}$, зависит от расчетной температуры наружного воздуха t_{HO} , таблица 1 (промежуточные значения определяются интерполяцией).

Таблица 1 – Зависимость показателя расхода теплоты на отопление зданий, от расчетной температуры наружного воздуха

t _{HO} °C	0	-5	-10	-15	-20	-25	-30	-35	-40
q , $\mathrm{Bt/M}$	93	110	128	142	156	165	174	179	185

$$Q_{OT}^{\mathcal{K}UT} = 165 \cdot 10 \cdot 31508 \cdot 10^{-3} = 51,99 \text{ MBt}.$$

Расход теплоты на отопление общественных зданий определяется из выражения (4):

$$Q_{OT}^{OBIII} = K_1 \cdot Q_{OT}^{KMT} = 0,25 \cdot 51,99 = 13 \text{ MBT},$$
 (4)

Суммарный расход теплоты на отопление определяется по формуле (5):

$$Q_{\text{OT}} = Q_{\text{OT}}^{\text{IIP}} + Q_{\text{OT}}^{\text{ЖИЛ}} + Q_{\text{OT}}^{\text{ОБЩ}} = 4,961 + 51,99 + 13 = 69,95 \text{ MBT}.$$
 (5)

Определение максимального расхода теплоты на вентиляцию промышленных предприятий, общественных и жилых зданий

Расход теплоты на вентиляцию промышленных зданий определяется из выражения (6):

$$Q_B^{\Pi P} = q_B \cdot V_{\Pi P} \cdot (t_{BH} - t_{HB}) \cdot 10^{-3} \text{ kBt},$$
 (6)

Приближенно вентиляционную характеристику промышленных зданий можно определить по формуле (7):

$$q_{B} \approx \frac{l \cdot C_{V} \cdot V_{IIP}^{B}}{V_{IIP}} \cdot 10^{3} \frac{BT}{M^{3} \cdot {}^{\circ}C},$$

$$l = 1, 5 \frac{1}{4ac} = 4, 166 \cdot 10^{-4} \frac{1}{c};$$

$$q_{B} \approx \frac{l \cdot C_{V} \cdot V_{IIP}^{B}}{V_{IIP}} \cdot 10^{3} = \frac{4, 166 \cdot 10^{-4} \cdot 1, 25 \cdot 77000}{110000} \cdot 10^{3} = 0, 365 \frac{BT}{M^{3} \cdot {}^{\circ}C};$$

$$Q_{B}^{IIP} = q_{B} \cdot V_{IIP} \cdot (t_{BH} - t_{HB}) \cdot 10^{-3} = 0, 364 \cdot 110000 \cdot (16 - (-14)) \cdot 10^{-3} = 1, 203 \text{ MBT}.$$

$$(7)$$

Расход теплоты на вентиляцию жилых и общественных зданий определяется из следующих выражений (8) и (9):

$$Q_B^{\mathcal{H}U\Pi} = K_2 \cdot Q_{OT}^{\mathcal{H}U\Pi} = 0, 1.51, 99 = 5,199 \text{MBT},$$
 (8)

$$Q_B^{OBUI} = K_3 \cdot Q_{OT}^{\mathcal{K}UII} = 0, 4 \cdot 51, 99 = 20, 8 \text{ MBT};$$
 (9)

Суммарный расход теплоты на вентиляцию вычисляется по формуле (10):

$$Q_B = Q_B^{KHII} + Q_B^{OBIII} + Q_B^{\Pi P} = 5,199 + 20,8 + 1,203 = 27,202 \text{ MBT}.$$
 (10)

Определение максимального расхода теплоты на горячее водоснабжение промышленных предприятий, общественных и жилых зданий

Расход теплоты на горячее водоснабжение промышленных зданий определяется из выражения (11):

$$Q_{IB}^{IIP} = \frac{m' \cdot a' \cdot c_p \cdot (t_{IB} - t_{XB})}{n_{cy}} = \frac{9452 \cdot 45 \cdot 4,187 \cdot (55 - 5)}{28800} = 3,092 \text{ MBr},$$
(11)

Расчетный (максимальный) расход теплоты на горячее водоснабжение жилых и общественных зданий вычисляется по формуле (12):

$$Q_{\Gamma B}^{\text{жил}+\text{общ}} = K_{\mathrm{q}}^{\text{max}} \cdot Q_{\Gamma B. \, \text{ср. нед.}}^{\text{жил}+\text{общ}}, \, _{\text{кВт}};$$

$$Q_{\Gamma B}^{\text{жил}+\text{общ}} = 2,4\cdot12,37 = 29,68 \, \text{MBt.}$$
(12)

Суммарный расход теплоты на горячее водоснабжение вычисляется по формуле (13):

$$Q_{IB} = Q_{IB}^{\mathcal{K}UII + OE} + Q_{IB}^{IIP} = 29,68 + 3,092 = 32,77 \text{ MBT}.$$
 (13)

Суммарная потребность в тепловой энергии вычисляется по формуле (14):

$$Q_{\Gamma}^{MAX} = (Q_{OT} + Q_R + Q_{TR}) \cdot 1, 1 = (69,95 + 27,202 + 32,77) \cdot 1, 1 = 142,9 \text{MBT}.$$
 (14)

Построение годового графика тепловых нагрузок по продолжительности

Режим работы любой станции зависит от величины и графика тепловых нагрузок. Расчетные температуры и длительность их стояния за отопительный сезон определяются по таблице 2.

Таблица 2 – Температуры наружного воздуха города спутника и их продолжительность во время отопительного периода

<i>t</i> ₁ , °C	-25	$ au_1$, час	34
<i>t</i> ₂ , °C	-20	$ au_2$, час	144
<i>t</i> ₃ , °C	-15	$ au_3$, час	470
<i>t</i> ₄ , °C	-10	$ au_{\scriptscriptstyle 4}$, час	1020
<i>t</i> ₅ , °C	-5	$ au_{\scriptscriptstyle 5}$, час	1850
<i>t</i> ₆ , °C	0	$ au_{\scriptscriptstyle 6}$, час	3380
<i>t</i> ₇ , °C	+5	$ au_7$, час	-
<i>t</i> ₈ , °C	+8	$ au_{8}$, час	4780

Расчет нагрузки на отопление:
$$Q_{\text{от}i} = Q_{\text{от}}^{\text{пр}} \frac{16 - t_{\text{H}i}}{16 - t_{\text{H}0}} + \left(Q_{\text{от}}^{\text{жил}} + Q_{\text{от}}^{\text{общ}}\right) \frac{18 - t_{\text{H}i}}{18 - t_{\text{H}i}};$$
 Расчет нагрузки на вентиляцию: $Q_{\text{в}i} = Q_{\text{в}}^{\text{пр}} \cdot \frac{16 - t_{\text{H}i}}{16 - t_{\text{H}i}} + \left(Q_{\text{в}}^{\text{жил}} + Q_{\text{в}}^{\text{общ}}\right) \cdot \frac{18 - t_{\text{H}i}}{18 - t_{\text{H}i}};$ Расчет нагрузки на горячее водоснабжение: $Q_{\text{г.в}} = 32,77 \text{ МВт};$ Расчёт тепловых нагрузок: $Q_{Ti} = Q_{OTi} + Q_{Bi} + Q_{\Gamma.B}.$ Результаты расчётов представлены в таблице 3.

Таблица 3 – Результаты расчёта тепловых нагрузок

$t_{{\scriptscriptstyle{\mathrm{H}}}i}$	-25	-20	-15	-14	-10	-5	0	5	8
$Q_{{ torus au}i}$	69,95	61,78	53,62	51,99	45,46	37,3	29,14	20,98	16,08
$Q_{\mathrm{B}i}$	31,83	31,83	31,83	31,83	27,85	22,86	17,88	12,9	9,9
Q_{Ti}	134,6	126,4	118,2	116,6	106,1	92,94	79,79	66,65	58,76

По расчётным данным строим график тепловых нагрузок по продолжительности, рисунок 1.

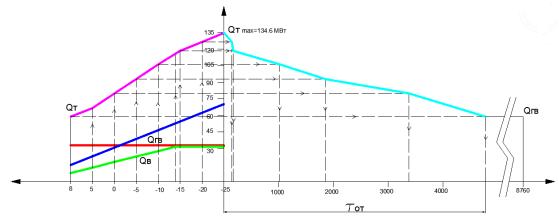


Рисунок 1 – График тепловых нагрузок

Назначение трубопроводов тепловой сети — бесперебойное снабжение потребителей тепловой энергией установленных параметров при минимальных утечках теплоносителя (горячей воды) и минимальных тепловых потерях. По правилам устройства и безопасной эксплуатации трубопроводов пара и горячей воды для объектов использования атомной энергии трубопроводы тепловой сети Ду 700 ТФУ относятся к 4 категории. Трубопроводы тепловой сети относятся к системе нормальной эксплуатации и имеют классификационное обозначение 4H.

По способу прокладки — надземная в двухтрубном исполнении. Диаметр трубопроводов — Ду 700 мм. Протяженность тепловой сети 7960 пм. отдельно прямого и обратного трубопровода. Рабочие параметры: давление 16 кгс/см², температура 130 °С. Теплоноситель — горячая вода. Схема теплоснабжения двухступенчатая по подогреву воды: 1 ступень — ТФУ НВ АЭС; 2 ступень — пиковый режим работы котлов ПТВМ — 30 М с открытым водоразбором воды.

Организованная подпитка тепловой сети производится от XBO котельных УТЭСиК НВ АЭС. Максимальный расход подпиточной воды $-400 \text{ m}^3/\text{ч}$.

Зоны действия источников тепловой энергии

В границах города Нововоронежа действует 2 источника тепловой энергии. Котельная НФ ООО «АТЭС» обеспечивает тепловой энергией 7 «Б» микрорайон и Северный

микрорайон. Котельные УТЭСиК НВ АЭС обеспечивает теплом 1,2,3,4,5 кварталы, 6 и 7 «А» микрорайоны. А также промышленную зону города Нововоронежа. Границы зон действия источников тепловой энергии представлены на рисунке 2.

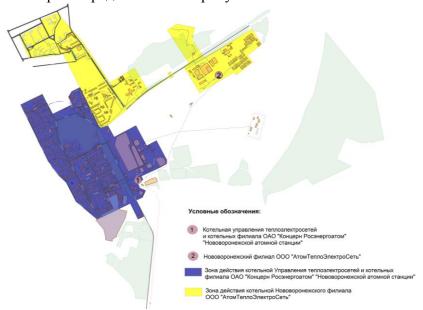


Рисунок 2 – Границы зон действия источников тепловой энергии

УТЭСиК – структурное подразделение филиала ОАО «Концерн Росэнергоатом» «Нововоронежская АЭС» производит тепловую энергию на трех котельных в отдельно стоящих зданиях, находящихся территориально на одной площадке (площадью 29 000 м²). Отпуск тепловой энергии и горячей воды потребителям осуществляется от сетевых трубопроводов котельных, находящихся территориально на ее площадке через тепловые сети транспортирующей организации. В качестве основного топлива на котельных используется природный газ, в качестве резервного – мазут.

Газоснабжение котельных УТЭСиК осуществляется от газопроводов высокого давления по двум вводам с давлением 6 кгс/см² диаметром Dy 200.

Состав и технические характеристики основного оборудования Котельных УТЭСиК НВ АЭС представлены в таблице 4.

Таблица 4 – Технические характеристики основного оборудования Котельных УТЭСиК НВ АЭС

Наименование источника адрес	Тип и количество котлов	Тип котлоагрегата	Производительность, Гкал/час	Завод-изготовитель котлов	Год ввода в эксплуатацию
Котельная № 1	котел № 7 ДКВр-6,5/13	паровой	4,20		1968
Заводской проезд, д. 1	котел № 8 ДКВр-6,5/13	паровой	4,20		1997
г. Нововоронеж, 396070	котел № 5 ДКВр-6,5/13	паровой	4,20	То	1997
	котел № 15 ДКВр-6,5/13	паровой	4,20	3aB	1970
	котел № 16 Е-6,5-1,4 ГМ (ДКВр-6,5/13 ГМ)	паровой	4,20	ьный	2005
Котельная № 2	котел № 10 ДКВр-10/13 ГМ	паровой	6,50	Te.	2006
Заводской проезд, д. 1 г. Нововоронеж, 396070	котел № 11 Е-10-1,4 ГМ (ДКВр-10/13 ГМ)	паровой	6,50	бийский котельный завод	1997
	котел № 12 Е-10-1,4 ГМ (ДКВр-10/13 ГМ)	паровой	6,50	Бийс	1997
	котел № 13 ДКВр-10/13	паровой	6,50		1968
	котел № 14 ДКВр-10/13	паровой	6,50		1968
Котельная № 3 Заводской проезд, д. 1 г. Нововоронеж, 396070	котел № 17 ПТВМ-30 М-4	водогрейный	30,00	Торогобужск й котельный завод	1973
1. Hoboboponese, 370070	котел № 18 ПТВМ-30 М-4	водогрейный	30,00	фрогс й кот зав	1973

Таким образом, проведенный расчет показывает целесообразность использования АЭС для теплоснабжения города-спутника. Данная система реализована в городе Нововоронеж и доказала свою эффективность на практике.

Литература

- 1. Соколов Е.Я. Теплофикация и тепловые сети: Учебник для вузов. 7-е изд., стереотип. М.: Издательство МЭИ, 2001. 478 с.
- 2. Справочное пособие теплоэнергетика электрических станций / Н.П. Волков, А.Д. Качан и др.; Под ред. А.М. Леонкова и Б.В. Яковлева, Минск: Беларусь, 1974. 368 с.
 - 3. Схема теплоснабжения муниципального образования городского округа город Нововоронеж с 2013 по 2029 год. Санкт-Петербург, 2013.