Излучение движущегося электрона

Невдах В.В. Белорусский национальный технический университет

Элементарным источником электромагнитных волн принято рассматривать колеблющийся элементарный заряд - электрон. Вокруг электрона, как и любого другого заряда, есть электрическое поле, которое неотделимо от него пока заряд существует. Области пространства, в которых отсутствуют материальные частицы, называются вакуумом. Если электрон движется в вакууме равномерно, то и его электрическое поле равномерно вместе ним. Если электрон c неравномерно, то в его электрическом поле появляется переменная составляющая, которая приводит к появлению переменного магнитного образом, формируются электромагнитные волны, таким распространяющиеся относительно электрона со скоростью $c = 1/\sqrt{\varepsilon_0 \mu_0}$, где ε_0 , μ_0 - электрическая и магнитная постоянные вакуума. Если колеблющийся электрон находится в однородной диэлектрической среде, то он создает электромагнитные волны, которые будут распространяться относительно его со скоростью $v = c/\sqrt{\varepsilon \mu} = c/n$, где ε и μ - диэлектрическая проницаемости среды, $n = c/v = \sqrt{\varepsilon \mu}$ магнитная преломления среды.

Таким образом, электрическое поле электрона в вакууме или в материальной среде является средой, колебания которой образуют электромагнитные волны. Скорость распространения электромагнитных волн относительно любой инерциальной системы отсчета, не связанной с зарядом, определяется путем векторного сложения скорости движения заряда относительно этой системы и скорости волн относительно заряда.

УДК 534.221

Эффект Доплера в акустике

Невдах В.В. Белорусский национальный технический университет

В современной физической литературе эффект Доплера в акустике в случае движущегося со скоростью u_d приемника под углом ϕ к направлению на неподвижный источник описывается формулой

$$f_d = f_s \left(1 + \frac{u_d \cos \varphi}{v_s} \right), \tag{1}$$

где f_d и f_s - частоты звука регистрируемого приемником и создаваемого источником соответственно.

Из (1) следует, что:

- эффект Доплера является линейным эффектом;
- в случае продольного эффекта Доплера $f_d > f_s$ при $\phi = 0$ и $f_d < f_s$ при $\phi = \pi$, и различие между частотами f_d и f_s определяется только скоростями звука v_s и движения приемника u_d ;
- при $\phi=\pi/2$ $f_d=f_s$, т.е., что поперечного эффекта Доплера в акустике не существует.

Строгий подход к рассматриваемому случаю эффекта Доплера в акустике дает другую формулу, которая имеет вид

$$f_{s} = \frac{f_{d}}{1 - \frac{lf_{d}}{v_{s}} \left(\sqrt{1 + \left(u_{d} / lf_{d} \right)^{2} - 2\left(u_{d} / lf_{d} \right) \cos \varphi} - 1 \right)}.$$
 (2)

Из формулы (2) следует, что:

- эффект Доплера в общем случае является нелинейным эффектом; различие между частотами f_d и f_s определяется скоростями v_s , u_d и расстоянием между источником и приемником l;
- в частном случае продольного движения (при ϕ =0 и ϕ = π) эффект Доплера является линейным;
- при $\phi=\pi/2$ и движении приемника с любой скоростью $u_d\neq 0$ $f_d < f_s$ в акустике имеет место поперечный эффект Доплера.

УДК 691.615.1

Стекло ударостойкое, методика определения прочностных характеристик ударостойкого стекла

Лапицкий А. Е., Марщак И. В. Белорусский национальный технический университет

Для остекления зданий учреждений банков, специальных транспортных средств, а также других объектов, требующих повышенных прочностных характеристик светопрозрачных заполнений, используются ударостойкое стекло.