АНАЛИЗ НА ЭВМ ТОРМОЗНОЙ ДИНАМИКИ АВТОПОЕЗДА

В.А. Сергеенко

Белорусский национальный технический университет

Просчитывается процесс торможения автопоезда с выключенным сцеплением, движущегося прямолинейно по горизонтальной дороге с твердым покрытием, путем полного нажатия на тормозную педаль.

В качестве основных моделей приняты двухосные тягачи с двухосным прицепом и с одноосным полуприцепом. При наличии у транспортных звеньев автопоезда большего числа мостов, его расчетную схему необходимо привести к осевой схеме одной из основных моделей, 1x1+1x1 либо 1x1+1.

Схемы сил, действующих при торможении на прицепной и седельный автопоезда, представлены на рис. 1 и 2 соответственно.

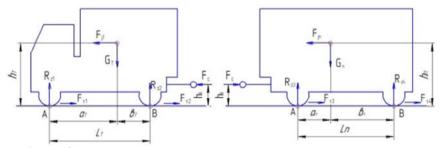


Рис. 1. Схема сил, действующих при торможении на прицепной автопоезд

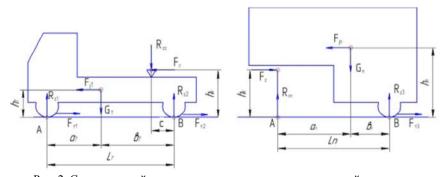


Рис. 2. Схема сил, действующих при торможении на седельный автопоезд

Уравнение движения автопоезда при торможении имеет вид $F_{i} = F_{\tau} + F_{f} + F_{g} \pm F_{i}, \tag{1}$

где F_j — сила инерции поступательно движущихся и вращающихся масс автопоезда, F_τ — тормозная сила автопоезда, F_f - сила сопротивления качению колес, $F_{\scriptscriptstyle B}$ — сила сопротивления воздуха, F_i - сила сопротивления подъему.

Сила инерции автопоезда $F_j = m_{an} \cdot a_{\tau} \cdot \delta_{an}$, где m_{an} – масса автопоезда, a_{τ} – замедление автопоезда, δ_{an} – коэффициент учета вращающихся масс. При принятых выше условиях, $\delta_{an} \approx 1$, $F_i = 0$, $(F_f, F_g) << F_{\tau}$ и выражение (1) приводится к виду

$$a_{\tau} = F_{\tau} / m_{\text{am}}. \tag{2}$$

Тормозная сила автопоезда равна сумме тормозных сил мостов:

$$F_{\tau} = \sum_{i=1}^{n} F_{\tau i}, \tag{3}$$

где п – число мостов автопоезда.

При торможении без блокировки колес тормозные силы мостов автопоезда пропорциональны тормозным моментам и могут быть найдены по выражению: $F_{\tau\,i}=2M_{\tau\,i}/\,r_0$, где $M_{\tau\,i}$ – момент, развиваемый одним тормозным механизмом і-того моста, r_0 – радиус качения без скольжения колес автопоезда.

Характерной особенностью процесса торможения автопоезда является неодновременность срабатывания тормозных механизмов различных мостов. Это оказывает влияние на распределение тормозных сил между мостами, усилие в сцепке и характер нарастания замедления.

На рис. 3 приведена динамическая характеристика тормозного привода прицепного автопоезда, представляющая изменение по времени давления в тормозных камерах при резком нажатии на тормозную педаль. За начало торможения принят момент, соответствующий началу нажатия на тормозную педаль. Из характеристики видно, что наиболее быстро начинает расти давление в тормозных камерах переднего моста, как наиболее близко расположенных к тормозному крану (кривая 1), затем — в задних тормозных камерах тягача (кривая 2) и тормозных камерах прицепа (кривые 3 и 4).

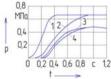


Рис. 3. Динамическая характеристика тормозного привода

Динамические характеристики тормозного привода при давлениях больше $0.1p_{max}$ аппроксимируются экспоненциальной зависимостью. При этом тормозной момент, развиваемый одним тормозными механизмами ітого моста, может быть записан выражением

$$M_{\tau i} = \alpha_i [p_{\max i} (1 - 0.9e^{-k_i(t - t_{3i})}) - \Delta p_i],$$

где α_i - константа, зависящая от типа и размерности тормозного механизма, $p_{max\;i}$ - максимальное давление в тормозной камере, Δp_i - давление, необходимое для приведение в действие тормозного механизма и соответствующее появлению тормозного момента (обычно принимается равным $0,1p_{max\;i}$), t - текущая координата времени с момента нажатия на тормозную педаль, $t_{3\;i}$ - время запаздывания тормозного привода моста (промежуток времени от момента нажатия на тормозную педаль до достижения давления Δp_i в тормозной камере), k_i - константа, определяющая выпуклость расчетной кривой p_i = f(t) и, следовательно, скорость нарастания давления в тормозной камере.

Определить значение k можно по динамической характеристике тормозного привода (рис. 4). Допустим, известны значения времени τ_0 и τ_1 , при которых давление в тормозной камере рассматриваемого моста достигает значений p_0 и p_1 соответственно. Тогда константа k для расчетной кривой, показанной штриховой линией, может быть определена по формуле

$$k = [\ln(1-p_0/p_{max}) - \ln(1-p_1/p_{max})/(\tau_1-\tau_0)],$$
 (4) где τ_0 и τ_1 - условное время, в течение которого давление в тормозных камерах нарастало бы до значений p_0 и p_1 соответственно, если бы оно из-

камерах нарастало бы до значений p_0 и p_1 соответственно, если б менялось по экспоненциальной зависимости.

Рис. 4. Соотношение расчётной кривой и кривой реального процесса при аппроксимации динамической характеристики по экспоненциальной зависимости

Если p_0 принято равным Δp , то условное время τ_0 соответствует координате $t=t_3$ реального процесса, а текущие значения времени t и τ на отрезке $\tau=[\tau_0,\,\tau_1]$ связаны между собой соотношением $t=t_3+\tau-\tau_0$, откуда $\tau=t-t_3+\tau_0$.

Выбор точки τ_1 определяет величину отношения p_1/p_{max} и влияет на качество аппроксимации: чем больше значение p_1/p_{max} , тем, очевидно, ближе τ_1 к точке достижения установившегося значения тормозного момента,

однако больше расхождение расчетной кривой и кривой реального процесса на участке τ_0 — τ_1 (рисунок 4).

Точку τ_1 удобно выбирать таким образом, чтобы знаменатель τ_1 — τ_0 в формуле (4) был близок к значению времени $t_{\rm H}$ нарастания тормозного момента моста.

Теоретически $t_{\rm H}$ тормозного момента моста равно промежутку времени от появления M_{τ} до достижения его установившегося значения, что соответствует изменению давления в тормозной камере от Δp до установившегося значения давления, обычно, p_{max} .

На практике, однако, затруднительно определить точно момент достижения установившегося значения M_{τ} моста. Поэтому условились считать временем $t_{\rm H}$ тормозного момента моста промежуток, соответствующий изменению давления в тормозной камере от Δp до $0.75p_{max}$.

При p_0/p_{max} = 0,1 и p_1/p_{max} = 0,75 значение константы k_i для i-того моста автопоезда может быть рассчитано по формуле:

$$k_i = (ln0.9 - ln0.25)/(\tau_1 - \tau_0) = 1.28/t_{\text{H }i},$$

где $t_{\rm H\,{\sc i}}$ — время нарастания тормозного момента моста.

Значения $t_{\rm H\,{\sc i}}$ и $t_{\rm 3\,{\sc i}}$ для каждого моста определяются по динамической характеристике тормозного привода.

Константа α_i является коэффициентой пропорциональности тормозного механизма. При правильно рассчитанном тормозном приводе значение α_i таково, что при достижении в тормозных камерах давления p_{max} на колесах моста создается максимальная по условиям сцепления колес с дорогой тормозная сила.

Это возможно при соблюдении равенства:

$$\varphi \cdot R_{zi} = 2 \cdot \alpha_i \cdot p_{\max i} - \Delta p_i / r_0$$

откуда

$$\alpha_i = 0.5 \cdot \varphi \cdot R_{zi} \cdot r_0 / (p_{\max i} - \Delta p_i).$$

Так, в частности, при $\phi = 0.7$ и $\Delta p_i = 0.1 p_{max i}$, константа

$$\alpha_i = 0.389 \cdot R_{zi} \cdot r_0 / p_{\max i},$$

где размерности переменных: $[R_{z\,i}] = H, [r_0] = M$ и $[p_{max\,i}] = M\Pi a.$

В общем виде тормозная сила i-того моста автопоезда $F_{\tau i}$ может быть определена следующим образом.

При $t \le t_{3 i}$ тормозная сила $F_{\tau i} = 0$.

При $t_{3\,i} < t < t_{3\,i} + t_{{\scriptscriptstyle H}\,i}$ и отсутствии блокировки колес тормозная сила

$$F_{\tau i} = 2 \alpha_i [p_{\max i} (1 - 0.9e^{-k_i(t - t_{3i})}) - \Delta p_i] / r_0.$$
 (5)

При $F_{\tau\,i}\!>\!\phi\,R_{z\,i}$ происходит блокировка колес, тормозная сила принимается

$$F_{\tau i}^{\varphi} = \varphi \cdot R_{z i}. \tag{6}$$

Нормальные реакции дороги $R_{z\,\,i}$, действующие на мосты автопоезда при торможении, находятся из уравнений моментов сил относительно точек A и B тягача и прицепа.

Для прицепного автопоезда

$$R_{z\,1} = \frac{1}{L_{\scriptscriptstyle T}} (g \cdot m_{\scriptscriptstyle T} \cdot b_{\scriptscriptstyle T} + a_{\scriptscriptstyle T} \cdot m_{\scriptscriptstyle T} \cdot h_{\scriptscriptstyle T} + F_c \cdot h_{\scriptscriptstyle K}), \tag{7}$$

$$R_{z\,2} = \frac{1}{L_{\rm T}} (g \cdot m_{\rm T} \cdot a_{\rm T} - a_{\rm T} \cdot m_{\rm T} \cdot h_{\rm T} - F_{\rm C} \cdot h_{\rm K}), \tag{8}$$

$$R_{z3} = \frac{1}{L_{\mathrm{T}}} (g \cdot m_{\mathrm{II}} \cdot b_{\mathrm{II}} + a_{\tau} \cdot m_{\mathrm{II}} \cdot h_{\mathrm{II}} - F_{c} \cdot h_{\kappa}), \tag{9}$$

$$R_{z\,4} = \frac{1}{L_{\scriptscriptstyle T}} (g \cdot m_{\scriptscriptstyle \Pi} \cdot a_{\scriptscriptstyle \Pi} - a_{\scriptscriptstyle \tau} \cdot m_{\scriptscriptstyle \Pi} \cdot h_{\scriptscriptstyle \Pi} + F_c \cdot h_{\scriptscriptstyle K}), \tag{10}$$

где g — ускорение свободного падения, $m_{\scriptscriptstyle T}$, $L_{\scriptscriptstyle T}$, $a_{\scriptscriptstyle T}$, $b_{\scriptscriptstyle T}$, $h_{\scriptscriptstyle T}$, $m_{\scriptscriptstyle \Pi}$, $L_{\scriptscriptstyle \Pi}$, $a_{\scriptscriptstyle \Pi}$, $b_{\scriptscriptstyle \Pi}$, $h_{\scriptscriptstyle \Pi}$ — масса, база и координаты центра масс тягача и прицепа, F_c , h_k — усилие в сцепке автопоезда и высота его приложения.

Для седельного автопоезда

$$R_{z\,1} = \frac{1}{L_{\rm T}} (g \cdot m_{\rm T} \cdot b_{\rm T} + a_{\rm T} \cdot m_{\rm T} \cdot h_{\rm T} + F_{c} \cdot h_{\rm K} + R_{zc} \cdot c), \tag{11}$$

$$R_{z\,2} = \frac{1}{I_{\rm m}} (g \cdot m_{\rm T} \cdot a_{\rm T} - a_{\tau} \cdot m_{\rm T} \cdot h_{\rm T} - F_c \cdot h_{\rm K} + R_{z\,c} (L_{\rm T} - c)), \quad (12)$$

$$R_{z3} = \frac{1}{L_{\pi}} (g \cdot m_{\pi} \cdot a_{\pi} - a_{\tau} \cdot m_{\pi} \cdot h_{\pi} + F_{c} \cdot h_{\kappa}), \tag{13}$$

где m_n , L_n , a_n , b_n , h_n — масса, база и координаты центра масс полуприцепа, R_{zc} , F_c , с и h_k — вертикальная и горизонтальная нагрузки, приходящиеся на седельно-сцепное устройство автопоезда и координаты точки их приложения.

Вертикальная нагрузка, действующая на седельно-сцепное устройство:

$$R_{zc} = \frac{1}{L_{\Pi}} (g \cdot m_{\Pi} \cdot b_{\Pi} + a_{\tau} \cdot m_{\Pi} \cdot h_{\Pi} - F_{c} \cdot h_{K} + R_{zc} \cdot c).$$

Усилие F_c в случае как прицепного, так и седельного автопоезда может быть определено из уравнения баланса проекций сил на продольную ось тягача: $F_c = F_{\tau,1} + F_{\tau,2} - a_{\tau} \cdot m_{\tau}$.

Скорость автопоезда V_{τ} и тормозной путь S_{τ} в процессе торможения определяются выражениями: $V_{\tau} = V_0 - \int_0^t a_{\tau} \cdot dt$, $S_{\tau} = \int_0^t V_{\tau} \cdot dt$, где V_0 начальная скорость торможения.

В расчете используются следующие исходные данные: m_{an} , κr ; m_{r} , κr ; L_{r} , L_{n} , мм; b_{r} , h_{r} , b_{n} , h_{n} , мм; h_{k} , мм; c, мм – для седельного автопоезда; r_{0} , мм; по каждому мосту – t_{3} і, t_{n} і, c, p_{max} і, $M\Pi a$, α_{i} ; ϕ ; V_{0} , м/c.

Процесс просчитывается на трех этапах торможения.

Первый этап соответствует времени запаздывания тормозного привода автопоезда, т.е. $t_3 = \min[t_{3 \text{ i}} \text{ i} = (1; \text{ n}; 1)]$. Тормозные силы и усилие в сцепке равны нулю, автопоезд движется равномерно со скоростью V_0 и проходит путь $S_\tau = V_0 \cdot t_3$. Нормальные реакции дороги $R_{z \text{ i}}$ равны их значениям в статическом положении автопоезда.

Второй этап торможения соответствует времени нарастания замедления автопоезда $t_H = \max[(t_{3\,i} + t_{H\,i})\ i = (1;\ n;\ 1)] - t_3$.

За это время последовательно срабатывают тормозные механизмы мостов и происходит нарастание тормозных моментов от нуля до достижения

ими установившихся значений. Процесс торможения на этапе просчитывается наиболее подробно — с интервалом $\Delta t = 0.1 t_{\rm H}$.

Для каждой текущей координаты t рассчитываются тормозные силы каждого моста $F_{\tau \ i}$ (5), тормозная сила автопоезда F_{τ} (3), замедление автопоезда a_{τ} (2), усилие в сцепке автопоезда $F_c = F_{\tau \ l} + F_{\tau \ 2} - a_{\tau} \cdot m_{\tau}$, путь $\Delta S = (V_{\tau} - a_{\tau} \cdot \Delta t/2) \cdot \Delta t$, проходимый за время Δt , текущая координата пути $S_{\tau} = S_{\tau} + \Delta S$, текущая координата скорости $V_{\tau} = V_{\tau} - a_{\tau} \cdot \Delta t$.

Рассчитываются нормальные реакции дороги $R_{z\,i}$ на мосты автопоезда (7)–(13). Значения тормозных сил $F_{\tau\,i}$ проверяются на ограничение по условию сцепления колес с дорогой (6).

Третий этап торможения соответствует промежутку времени от $t>t_3+t_{\scriptscriptstyle H}$ до остановки автопоезда. Здесь расчёт параметров выполняется по приведённым выше формулам с интервалом $\Delta t=0.5$ с.

На печать выводятся исходные и информационные данные, тормозное время t_{τ} , с (T) и тормозной путь S_{τ} , м (ST). В скобках даны идентификаторы переменных.

Независимой переменной является время торможения t. Для каждой расчетной точки в табличной форме приводятся: номер точки N; текущая координата времени t, c (T); замедление a_{τ} , м/c² (AT); скорость V_{τ} , м/c (VT), путь S_{τ} , м (ST); нормальные реакции дороги на мосты R_{z} і, H (RZ); предельные тормозные силы по сцеплению F_{ϕ} і, H (FF); тормозные силы, создаваемые тормозными механизмами мостов F_{p} і, H (FP); действительные тормозные силы мостов F_{τ} і, H (FT), F_{τ} і = min(F_{ϕ} і, F_{p} і); тормозная сила автопоезда F_{τ} , H (FTS); усилие в сцепке автопоезда F_{c} , H; нагрузка на седло

седельного автопоезда R_{zc} , H (RZC).

Исходный код написан на алгоритмической языке Fortran.

Пример вывода данных представлен в таблицах 1 и 2, на рис. 5 и 6 приведены графики, построенные по данным таблиц результатов расчета.

K1	m 5	.12	K2	u 3.4	6	K3 =	3.05	. , 1	(4 =	2.67
							т	AFA	I F A	1
N	Υ	FT1	FT2	FT3	FT4	FTS	AT	FC	Vĭ	ST
	С	,H	н	н	н	н	H/C2	н	H/C	ří
0	0.00	0.	0.	٥.	٠.	6.	0.00	é.	16.67	0.0
1	0.15	0.	ø.	0.	0.	θ.	0.00	0.	16.67	2.54
2	0.27	16651.	0.	0.	0.	16651.	0.89	8637.	16.56	4-4
3	0.39	25752.	7957.	0.	0.	33709.	1.80	17485.	16.35	6.44
4	0.56	30726.	13978.	e.	0.	44763.	2.39	23188.	16.67	8.33
5	0.62	33444.	17980.	0.	0.	51424.	2.75	26675.	15.75	10.19
6		34929.			0.	55571.				
7		35741.			529.	64432.				
8				14736.	7150.	81659.				
9				21007.		93787.				
10				25383.		101809.				
11				33958.		116417.				
12				35161.		117433.				28.96
13				35423.		117643.				31.67
14				35480.		117707.				32.81
15	3.44	36720.	24012.	35493.	21487.	117712.	6.29	6056.	0.00	32.85

N												
	RZ1 H	RZ2 H	RZ3 H	RZ4 H	FF1 H	FF2	FF3 H	FF4	FP1 H	FP2 H	FP3 H	FP4 H
ě	35316.	52974.	47579.	47579.	24721.	37082.	33305.	33305.	0.	ø.	0.	0
1	35316.	52974.	47579.	47579.	24721.	37082.	33305.	33305.	0.	ø.	v.	ŵ.
2	40139.	48151.	48154.	47003.	28097.	33706.	33708.	32902.	16651.	ě.	0.	. 0
3	45079.	43211.	48744.	46413.	31555.	30248.	34121.	32489.	25/52.	7957.	0.	0
4	48263.	40027.	49124.	46033.	33784.	28019.	34397.	32223.	30726.	13978.	0.	6
5	50210.	39660.	49357.	45800.	35147.	26656.	34550.	32060.	33444.	17980.	0.	6
6	51411.	36879.	49500.	45657.	35988.	25815.	34650.	31960.	34929.	20641.	0.	- 4
7	52219.	36071.	51272.	43885.	36553.	25250.	35890.	30720.	35741.	22411.	5751.	529
8	52838.	35452.	55509.	39648.	36987.	24816.	38856.	27754.	36185.	23587.	14736.	7150
				36637.								11984
16				34647.								
11				31000.								
12				30763.								
13				30696.								
14				30706.								
15				30696.								

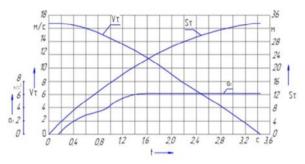


Рис. 5. Тормозная диаграмма.

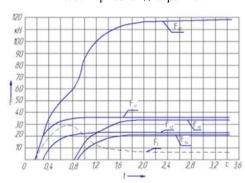


Рис. 6. Диаграмма тормозных сил и усилия в сцепке прицепного автопоезда

Литература: Автомобили: Специализированный подвижной состав/ М.С. Высоцкий [и др.] – Мн.: Выш. шк., 1989. – 240 с.