ширяет практику их применения, в частности для гибридной сварки сплавов алюминия и меди.

Серьезный инновационный прорыв в технологии лазерной гибридной сварке обеспечило создание и появление на рынке твердотельных волоконных лазеров мощностью от 1,0 до 30 кВт. По темпам производства и продаж они резко опережают другие типы технологических лазеров.

Из выше перечисленного можно сделать вывод, что лазерно-дуговая сварка — это наиболее экономичная, качественная и надежная сварка, нежели привычные нам всем виды сварки. Остается только вопрос о времени: когда лазерно-дуговая сварка начнет применяться более широко.

УДК 621.791.

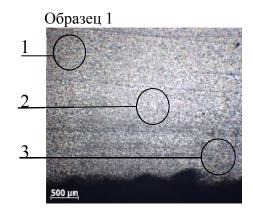
Исследование зоны термического влияния низкоуглеродистой стали при различных способах сварки

Студент гр. 10403112 Марукович Д.А. Научный руководитель – Голубцова Е.С. Белорусский национальный технический университет г. Минск

Целью настоящей работы является исследование микротвердости и микроструктуры в сварных образцах, выполненных сваркой плавлением низкоуглеродистой стали.

Обеспечение требуемой работоспособности сварных соединений в значительной мере определяется ходом структурно-фазовых превращений, протекающих в металле шва и ЗТВ.

К низкоуглеродистым конструкционным сталям по классификации, принятой в сварочной технике, относят стали, содержание углерода в которых не превышает 0,25%. Они хорошо свариваются в широком диапазоне режимов сварки независимо от толщины свариваемых элементов и температуры воздуха.


В зоне термического влияния сварного соединения из низкоуглеродистой стали различают участки: неполного расплавления, перегрева, полной перекристаллизации или нормализации, неполной перекристаллизации, рекристаллизации и синеломкости.

Участок неполного расплавления — переходный от наплавленного металла к металлу свариваемой детали. Ширина этого участка очень мала, она измеряется микронами, но его роль в сварном соединении весьма важна. Здесь происходит сплавление, т. е. образование металлической связи между металлом шва и свариваемой деталью. Если между зернами имеется пленка окислов или осажденных газов, то в этом месте не произойдет прочной металлической связи и этим можно объяснить образование трещин в зоне сплавления.

Участок перегрева находится в границах температур нагрева металла 1100 – 1450 °С и характеризуется значительным ростом зерна. Поверхность перегретых зерен может превышать поверхность начальных зерен в 16 раз при ацетилено-кислородной и в 12 раз при дуговой сварке. Перегрев снижает механические свойства стали, главным образом пластичность и сопротивление ударным нагрузкам. Эти свойства тем ниже, чем крупнее зерна и шире участок перегрева. Перегретый металл является самым слабым местом в сварном соединении, поэтому здесь чаще всего оно и разрушается.

В настоящей работе исследовали влияние режимов аргонно-дуговой сварки стали 3. Провели исследование образцов на микротвёрдость H, к Γ с/мм² при нагрузке 20 Γ с на микротвердомере ПМТ-3. За основу были взяты 2 образца, сваренные при различных силах сварочного тока. Сварку осуществляли при следующих режимах: I=120 A, I=175 A.

Исследуемые зоны показаны на рисунке 1.

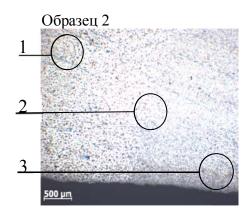


Рисунок 1 – Исследуемые зоны:

1 — зона основного металла; 2 — зона рекристаллизации; 3 — зона сварного шва Результаты измерений микротвёрдости образцов занесены в таблицу 1.

Таблица 1 – Результаты измерений

Образец 1			Образец 2		
	ризец т	Сила		оразоц 2	Сила
Исследуемые	№ Точек	сварочного	Исследуемые	№ Точек	сварочного
30НЫ	Nº 1046K	тока	ЗОНЫ	Nº 109ek	тока
		$I_{cB} = 120 \text{ A}$			$I_{cB} = 175 \text{ A}$
Микротвердость HV					
	1	303,6		1	287,4
	2	287,4		2	287,4
Зона основного	3	303,6	Зона основного	3	287,4
металла	4	303,6	металла	4	287,4
	5	272,5		5	287,4
	6	295,5		6	303,6
Зона рекристал- лизации	1	303,6		1	258,7
	2	340,3		2	287,4
	3	287,4	Зона рекристал-	3	303,6
	4	287,4	лизации	4	303,6
	5	272,5		5	287,4
	6	321,2		6	272,5
	1	303,6		1	321,2
	2	384,2		2	384,2
Зона сварного	3	340,3	Зона сварного	3	340,3
шва	4	437,1	шва	4	409,4
	5	324,2		5	384,2
	6	362,2		6	384,2

В заключении доклада можно сделать вывод, что у обоих образцов присутствует разница в протяжённости зоны термического влияния (ЗТВ). С увеличением силы сварочного тока, ширина зоны термического влияния увеличивается.