СВЯЗЬ МЕЖДУ ТЕПЛОПРОВОДНОСТЬЮ И ЭЛЕКТРОПРОВОДНОСТЬЮ МЕТАЛЛОВ

Студенты гр. 10115116 Бурвель Е. В., Третьякевич М. Г. Канд. техн. наук, доцент Смурага Л. Н. Белорусский национальный технический университет

Рассмотрим данную зависимость с позиции классической электронной теории. Согласно этой теории электроны в металлах ведут себя как классический идеальный газ: с одной стороны они переносят теплоту, а с другой - электрический заряд.

Теплопроводность газа $\lambda=\frac{1}{3}C_V\rho l_0\overline{\nu}$. Удельная теплоемкость газа $C_V=\frac{dU_{y_{\rm M}}}{dT}$, удельная внутренняя энергия газа $U_{y_{\rm M}}=\frac{U}{m}=\frac{\frac{imRT}{2\mu}}{m}=\frac{iRT}{2\mu}$. Удельная теплоемкость будет равна $C_V=\frac{iR}{2\mu}-\frac{ikN_a}{2mN_a}=\frac{3k}{2m}$. С учетом плотности газа $\rho=nm$ и преобразований окончательно теплопроводность электронного газа примет вид $\lambda=\frac{1}{2}nkl_0\overline{\nu}$.

Здесь число степеней свободы для одноатомного газа i=3, n- концентрация электронов, k- постоянная Больцмана, l_0 - длина свободного пробега электронов, \overline{v} - средняя скорость хаотического движения электронов, m- масса электрона; μ , R, $N_{\rm a}$ - соответственно молярная масса газа, молярная газовая постоянная, число Авогадро.

Удельная электропроводность металлов $\sigma = \frac{e^2 n l_0}{2 m \overline{v}}$; поделив $\frac{\lambda}{\sigma}$ и с учетом $m \overline{V}^2 = 3kT$, окончательно получим связь между теплопроводностью и электропроводностью для металлов:

 $\frac{\lambda}{\sigma} = 3\left(\frac{k}{e}\right)^2 T$. Данное выражение в физике является законом Видемана-Франца, хорошо выполняется при низких температурах и немногим большим комнатной. Здесь число Лоренца $L = 3\left(\frac{k}{e}\right)^2$ определяется универсальными константами и поэтому не зависит от природы металла и численно равно $\approx 2.25 \times 10^{-8}$, (Вт Ом)/ K^2 .

Изучение явления электропроводности металлов с позиции классической физики сводится к нахождению численного значения числа Лоренца. Экспериментальным путем находят коэффициент теплопроводности металла, далее определяют сопротивление образца и его удельное сопротивление в пределах температур 30-40 °C, потом удельную электропроводность, затем число Лоренца и сравнивают его с теоритическим значением.