Использование обобщенного корневого годографа при синтезе систем с неопределенностью

Несенчук А.А.

Объединенный институт проблем информатики НАН Беларуси

$$p(s) = s^{n} + a_{1}s^{n-1} + \dots + a_{n-1}s + a_{n},$$
 (1)

Опишем динамическую систему характеристическим полиномом $p(s) = s^n + a_1 s^{n-1} + \ldots + a_{n-1} s + a_n, \tag{1}$ где $a_j \in \{\underline{a}_j, \overline{a}_j\}$ — вещественные коэффициенты, $j=1,\ldots,n,$ $s=\sigma+i\omega$.

Требуется решить задачу синтеза интервального полинома (1) четвертого порядка, семейство корней которого располагается в заданной в плоскости собственных частот в области качества Q, ограниченной линиями равной степени устойчивости, β_1 и β_2 , исходя из того, что номинальные значения и границы изменения коэффициентов a_i не известны.

Используем расширение E_n [1] полинома (1) следующего вида: $E_n = \{p_k(s) = s^k + a_1 s^{k-1} + \ldots + a_{k-1} s + a_k\},$

$$E_n = \{ p_k(s) = s^k + a_1 s^{k-1} + \dots + a_{k-1} s + a_k \},$$
 (2)

где k=1, n, $p_k(s)=p(s)$; $p_{k-1}(s)=(p_k(s)-a_k)/s$, и строим годографы (2) (рис. 1). Вычисление интервалов a_i (1) основано на следующем утверждении [1].

Утверждение. Корневой годограф порождающего полинома $p_{k-1}(s)$ относительно любого из его коэффициентов a_i представляет собой траектории начальных точек свободного годографа $p_k(s)$.

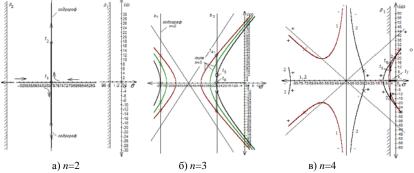


Рис. 1 — Поля корневых траекторий при n=2, n=3 и n=4

Границы интервалов a_1 определяем в соответствии с границами β_1 и β_2 . Тогда, согласно конфигурации полей и рис. 1a: $\underline{a}_2 = a_2(t_1)$, $\overline{a}_2 = a_2(t_2)$; coгласно рис. 16: $a_3 = \min (a_{3 \min}(t_4), a_{3 \min}(t_5)), a_3 = 0$; согласно рис. 1в: $a_4 =$ $\min (a_{4 \min}(t_6), a_{4 \min}(t_7)), \underline{a}_4 = 0,$ где $a_{j \min}$ – минимальное значение a_j .