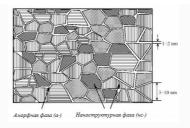
к жаропрочности турбины и позволяет делать более дешёвые или более изощрённые конструкции.

УДК 621.793


Мартинкевич Я. Ю., Харлан Ю. А.

СВЕРХТВЕРДЫЕ НАНОСТРУКТУРНЫЕ ПЛЕНКИ ТІ-AL-B-N

БНТУ, Минск Научный руководитель Комаровская В. М.

Значительный интерес представляют сверхтвердыенаноструктурные пленки, состоящие из несмешиваемых фаз (или фаз с ограниченной растворимостью) в виде нанокристаллов и аморфной фазы (а-), окружающихэти нанокристаллы. В качестве наноструктурных фаз (нс-) используют соединения твердых нитридов переходных металлов (TiN, CrN, AlN, ZrN, TaN и тд.), боридов (TiB2, CrB2, WB, ZrB2 и тд.), а в качестве аморфной матрицы могут выступать соединения а-BN. Синтез подобных покрытий определяется возможностью одновременного соосаждениянанокристаллических и аморфных фаз, нс-TiB2+нс-TiAlN+a-BN+a-AlN в системе Ti-Al-B-N.

Модель сверхтвердой пленки показана на рисунке. Суть модели состоит в том, что свободные от дислокаций нанокристаллы твердых фаз размером 3–10 нм окружены тонкой прослойкой аморфной фазы размером 1–2 нм. При этом предполагается, что поскольку в нанокристаллах и аморфной фазе отсутствует дислокационная активность, то такие пленки должны обладать высокими значениями сопротивления пластической деформации и упругого восстановления. Считается, что источники размножения дислокаций не могут существовать в нанокристаллитах размером менее 3 нм.

Модель сверхтвердой наноструктурной пленки

Появление аморфной фазы, как правило, приводит к трансформацииколонной структуры пленки, представляющей собой совокупность взаимосвязанных колонн, в композитную наноструктурную пленку, в которой нанокристаллы одной или нескольких фаз окружены тонкими аморфными прослойками. Такая композитная нс-пленка соответствует описанной выше модели сверхтвердой наноструктурной пленки. Контролируемое введение «аморфизаторов», например бора, позволяет управлять структурой и свойствами наноструктурных пленок.

Вместе с тем, твердость наноструктурных пленок с размером кристаллитов менее 10 нм может варьироваться в достаточно широких пределах. Хотя причины сверхвысокой твердости отдельных композиций до конца не понятны. К основным факторам, способствующим росту твердости относятся: высокие сжимающие напряжения вследствие разности коэффициентов термического расширения пленки и основы; искажение решетки кристаллических фаз вследствие слабой взаимной растворимости элементов и фаз; высокие внутренние напряжения (или напряжения роста); наличие прочной химической связи между различными фазовыми составляющими.

По своим физико-механическим и трибологическим свойствам многофункциональные наноструктурные пленки значительно превосходят традиционные пленки из нитрида и карбонитрида титана. Так пленки Ti-B-N и Ti-Al-B-N, полученные при

оптимальных режимах, имеют соответственно твердость 31–34 и 40–47 ГПа, средний модуль упругости 378 и 506 ГПа, коэффициент трения 0,49-0,6 и 0,45-0,52, скорость сухого износа $(3,4-4,6)\cdot 10^{-7}$ и $(6,0-6,8)\cdot 10^{-7}$ мм $^3\cdot H^{-1}$ м $^{-1}$.

УДК 621.793.

Мартинкевич Я. Ю., Харлан Ю. А.

ТЕРМОСТОЙКИЕ ПОКРЫТИЯ TI-AL-B-N, ПОЛУЧЕННЫЕ МЕТОДОМ МАГНЕТРОННОГО РАСПЫЛЕНИЯ

БНТУ, Минск Научный руководитель Комаровская В. М.

Новые материалы являются основой технологий XXI века, а индустрия наносистем и материалов — одно из приоритетных направлений развития науки и техники, влияющих сегодня почти на все научные направления и сферы деятельности. Важным, бурно развивающимся направлением науки о материалах является инженерия поверхности применительно к созданию функциональных наноструктурных пленок и покрытий с характерным размером кристаллитов от 1 нм до нескольких десятков нанометров.

Нами показана структура пленки в системе Ti-Al-B-N, снятая с помощью просвечивающего электронного микроскопа высокого разрешения. Здесь нанокристалл нитридной фазы (Ti,Al)N размером 1,5 нм выделен кругом, а точки на фотографии – это атомы.

Высокая объемная доля границ раздела с прочной энергией связи, отсутствие дислокаций внутри нанокристаллитов размером 1–4 нм, возможность получения пленок с контролируемым соотношением объемных долей кристаллической и аморфной фаз, изменение взаимной растворимости элементов