НОВЫЕ ФИЗИКО-ХИМИЧЕСКИЕ ПОДХОДЫ К СОВЕРШЕНСТВОВАНИЮ КАЧЕСТВА ДОРОЖНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

Ковалев Я.Н., д-р техн. наук, профессор, Яглов В.Н., д-р хим. наук, профессор, Меженцев А.А., канд. техн. наук, доцент, Бурак Г.А., канд. техн. наук, доцент, Евсеева Е.А., канд. техн. наук, доцент, Кречко Н.А., Шагойко Ю.В.

Белорусский национальный технический университет (г. Минск, Республика Беларусь)

1. Фосфогипс, как температуропонижающая добавка при получении асфальтобетона.

Строительство асфальтобетонных покрытий связано с большими энергетическими затратами. Наибольшая часть затрат энергоносителей при производстве работ приходится на производство асфальтобетонной смеси. При приготовлении 100 тонн асфальтобетона затрачивается 3,5 тонны мазута.

В настоящее время температура выпускаемых горячих асфальтобетонных смесей составляет (150–165) °С. В то же время высокая температура технологических процессов приготовления и укладки смеси является причиной старения битума и, как следствие, преждевременного разрушения асфальтобетона. При более низкой температуре приготовления ухудшаются качество перемешивания компонентов и удобоукладываемость готовой смеси, что снижает качество выполняемых работ. Необходимо было найти компромисс. С этой целью были проведены экспериментальные исследования влияния фосфогипса на технологические свойства асфальтобетона типов ЩМСц I/2,2, ЩМАг I/2,75, ЩМБг I/2,75. Составы асфальтобетонов приведены в таблице 1.

Коэффициенты водостойкости и морозостойкости при длительном водонасыщении определялись по СТБ 1115. Результаты определения коэффициентов водостойкости и морозостойкости

асфальтобетона в зависимости от содержания фосфогипса приведены в таблице 2.

Составы асфальтобетона

№ п/ п	Тип смес и	Щебень , %	Отсев	Минеральны й порошок, %	Битум , %	Фосфогипс, %
1	C	72	18	10	6,2	0
2	С	72	18	10	6,2	0,5
3	С	72	18	10	6,2	1,0
4	A	54	34	12	5,7	0
5	A	54	34	12	5,7	0,5
6	A	54	34	12	5,7	1,0
7	Б	46	47	7	5,5	0
8	Б	46	47	7	5,5	0,5
9	Б	46	47	7	5,5	1,0

Таблица 2 Физико-механические свойства асфальтобетонов

Физико механи неские своиства асфальтоостонов							
№	q, г/см ³	W, %	R50,	R0,	Р СДВ,	Квод	К
п/п	q , 1/см		МΠа	МΠа	МПа	Квод	мор
1	2,45	0,9	1,04	2,65	2,32	0,89	0,91
2	2,45	0,8	1,02	2,74	2,35	0,92	0,97
3	2,46	0,8	1,07	2,95	2,43	0,93	0,93
4	2,50	1,5	1,47	3,35	2,72	0,76	0,72
5	2,51	1,4	1,52	3,42	2,87	0,78	0,75
6	2,51	1,6	1,58	3,46	2,84	0,73	0,71
7	2,48	1,8	1,95	2,89	2,53	0,80	0,67
8	2,48	1,7	2,02	3	2,56	0,82	0,8
9	2,47	1,65	1,97	3,05	2,55	0,83	0,7

Примечание: q – плотность, r/cm^3 , W – водонасыщение, %, R 50 – предел прочности при сжатии при 50 °C, МПа, R 0 – предел прочности при растяжении при 0 °C, МПа, R сдв – предел прочности при сдвиге при 50 °C, МПа, K вод – коэффициент водостойкости, K мор – коэффициент морозостойкости.

Результаты определения интенсивности старения асфальтобетона в зависимости от количества добавки приведены в таблице 3.

Таблица 1

Таблица 3 Результаты определения коэффициента старения асфальтобетона

тезультаты определения коэффиционта старония асфальтосстона						
№ п/п	q, г/см ³	W, %	R50, МПа	R0, МПа	Кс	
1	2,45	0,9	1,04	2,65	0,87	
2	2,45	0,8	1,02	2,74	0,90	
3	2,46	0,8	1,07	2,95	0,92	
4	2,50	1,5	1,47	3,35	0,82	
5	2,51	1,4	1,52	3,42	0,83	
6	2,51	1,6	1,58	3,46	0,83	
7	2,48	1,8	1,95	2,89	0,80	
8	2,48	1,7	2,02	3	0,82	
9	2,47	1,65	1,97	3,05	0,83	

Примечание: q – плотность, r/cm3, W – водонасыщение, %, R 50 – предел прочности при сжатии при 50 °C, МПа, R 0 – предел прочности при растяжении при 0 °C, МПа, K с – коэффициент старения асфальтобетонной смеси.

Полученные данные показывают, что введение в состав асфальтобетонной смеси фосфогипса в количестве до $0.5\,\%$ от массы минеральной части позволяет повысить коррозионную стойкость и устойчивость к старению горячих асфальтобетонов.

2. Использование неорганических люминофоров для обустройства дорог.

Интенсивность движения на автомобильных дорогах с каждым годом увеличивается. В этих условиях роль всех элементов регулирования и обеспечения безопасности дорожного движения значительно возрастает. Поэтому применяемые материалы и технологии должны обеспечивать их постоянное наличие и хорошую видимость на дороге, особенно в темное время суток.

Анализ публикаций показывает, что основными направлениями исследований в этой области являются работы по созданию новых светящихся красок с использованием неорганических люминофоров. Основными характеристиками люминофоров являются: цвет свечения, определяемый спектром излучения, максимум которого может быть как в видимой области, так и в невидимой (инфракрасной или ультрафиолетовой); выход — коэффициент трансформации

поглощенной энергии в излучение; **инерционность** — длительность свечения после прекращения возбуждения; она может колебаться от 10^{-9} с до многих часов.

В работе использовали люминофор – алюминат стронция, допированный европием и дспрозием марки ТАТ 33. К преимуществам предлагаемого люминофора относятся:

- период послесвечения в 50 раз больше, чем у обычного фосфора;
 - активация волнами разной длины (200-450 нм);
- начальная яркость послесвечения в 10 раз выше, чем у других пигментов;
- увеличение люминесценции и послесвечения с увеличением времени активации;
 - погодная и световая устойчивость.
 - отсутствие опасных для здоровья и радиоактивных веществ.
- не загрязняет окружающую среду и обладает высокой химической стабильностью.

Скорость зарядки люминофора показывает как быстро ТАТ 33 заряжается от солнечного света в канделах на 1 m^2 (рис. 1).

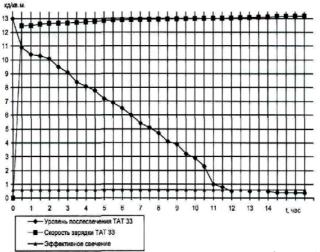


Рис. 1. График зарядки и послесвечения люминофора ТАТ-33

Сравнительные свойства люминофоров приведены в таблице 4.

Таблица 4

Сравнительные свойства люминофоров

Сравнительные своиства люминофоров					
Свойства люминофоров	Люминофор ТАТ 33 с длительным послесвечением	Обычные фосфоресцентные пигменты с коротким послесвечением.			
Химический состав	Sr ₄ A1 ₁₄ 0 ₂₅ ·Eu,Dy	ZnS·Cu			
Цвет	Светлый желто- зеленый	Желто-зеленый			
Цвет послесвечения	Зеленый	Зеленый, голубой, красный, фиолетовый и т.д.			
Размер частиц	60-80 nm	20-40 nm			
Длина волны света возбуждения	200-450 nm	200-450 nm			
Длины волны излучаемого света (пик)	580 nm	530 nm			
Яркость послесвечения	Около 340 mcd/m^2	$20-30 \text{ mcd/m}^2$			
Время угасание послесвечения	Больше 3000 минут	После 200 минут			
Время активации	Около 20 минут Около 4 мину				
Светостойкость	Более 1000 часов	10-24 часов			
Плотность	$3,6 \text{ г/cm}^3$	4,1 г/см ³			

Из графика (рис. 1) видно, что максимальный уровень яркости достигается достаточно быстро. Нахождение ТАТ 33 под солнечным светом не приводит к значительному увеличению яркости послесвечения, но время зарядки ТАТ 33 напрямую связано с временем послесвечения. Идеальная люминесцирующая краска должна быть

источником непрерывного излучения света, без какого бы то ни было внешнего источника энергии.

В связи с этим, для изготовления светосоставов постоянного действия (СПД) применяли искусственный радиоактивный препарат, 147 Pm в виде соли PmCl $_2$. Преимущество использования этого β -излучателя заключается в том, что его излучение (электроны с различной энергией) легко задерживается тонкими защитными слоями и экранами.

3. Цементное вяжущее, модифицированное наночастицами кремнезема.

При получении гелей кремниевой кислоты методом нейтрализации соляной кислотой установлено, что наиболее сложно скорость гелеобразования зависит от pH среды. При отсутствии в системе электролита и модифицирующих добавок гелеобразование протекает с минимальной скоростью в области pH 2-3. Максимальная скорость процесса приходится на область pH от 5 до 7. Значение pH, при которых золи проявляют минимальную устойчивость, зависят от следующих факторов: природы кислоты, наличия электролитов, концентрации кремнезема, температуры и т.д. Скорость гелеобразования максимальна при pH 5,5-6,0.

Использование полученных наночастиц показало, что их роль в формировании структуры цементного камня разноплановая. Вопервых, они участвуют в химической реакции образования новой кристаллической фазы – низкоосновных гидросиликатов кальция, тогда как без модификатора первичными являются высокоосновные гидросиликаты кальция, во-вторых, эти новообразования заполняют микропоры своими кристаллическими сростками И повышают прочность бетона, в-третьих плотность И низкоосновные И кальция гидросиликаты являются активными центрами кристаллизации.

Таким образом, наноразмерные частицы SiO_2 являются перспективными модификаторами цементного камня и бетона.