где \mathcal{E} — параметров подачи рабочей жидкости по магистралям потребителей;

 k_i – коэффициент подачи, $k_i = t_{pij} / t_{pj}$

Заключение

- 1. Предложен принцип деления потока рабочей жидкости насоса многомоторного гидропривода, состоящий в дискретной подаче фиксированных объемов рабочей жидкости последовательно по напорным магистралям потребителей.
- 2. Определены основные математические выражения, позволяющие рассчитать конструктивные параметры дискретного гидрораспределителя роторного типа.

Литература

1. Модульная дозирующая система: пат. 3674 Респ. Беларусь, МПК7 F 15В 11/22 / В.А. Коробкин, А.Я. Котлобай, А.Н. Ивановский, Ю.А. Андрияненко, Б.А. Луцков, А.А. Котлобай; заявитель Республиканское унитарное предприятие «Минский тракторный завод». — № и 20060846; заявл. 13.12.06; опубл. 30.06.07 // Афіцыйны бюл. / Нац. цэнтр інтэлектуал, уласнасці. — 2007. — № 3. — С. 216.

УДК 69.002.5 - 82

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ГИДРОПРИВОДА ТЕХНОЛОГИЧЕСКИХ МАШИН

Котлобай А.Я., канд. техн. наук доцент, Котлобай А.А.

Белорусский национальный технический университет

(г. Минск, Республика Беларусь)

Введение

Применение делителей потока рабочей жидкости насоса в объемном многомоторном гидроприводе рабочих органов технологического оборудования многофункциональных дорожно-строительных машин позволит уменьшить удельный механических вес передач кинематической цепи привода. Такая задача тэжом решаться применением делителей потока рабочей жидкости насоса. Разработан принцип деления потока рабочей жидкости насоса, состоящий в дискретной подаче фиксированных объемов рабочей жидкости последовательно по напорным магистралям потребителей.

Математическая модель гидропривода

Динамическая схема двухмоторного привода представлена на рис. 1.

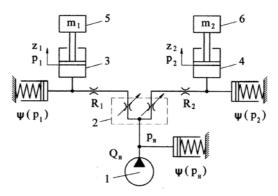


Рис. 1. Динамическая схема двухмоторного привода: 1 – насос; 2 – дискретный гидрораспределитель (ДГ); 3, 4 – исполнительный гидроцилиндр; 5, 6 – груз

Переходные процессы при работе насоса 1 с исполнительными гидроцилиндрами 3, 4 и двухпоточным дискретным гидрораспределителем описывается системой дифференциальных уравнений:

$$\ddot{z}_{1} = (F_{1}p_{1} - P_{1} - P_{mp1} \operatorname{sgn} \dot{z}_{1}) / m_{1}
\ddot{z}_{2} = (F_{2}p_{2} - P_{2} - P_{mp2} \operatorname{sgn} \dot{z}_{2}) / m_{2}
\dot{p}_{n} = \left[Q_{n} - \sum_{i=1}^{n=2} F_{\delta i} \sqrt{\frac{2|\Delta p_{i}|}{\varsigma \rho}} \operatorname{sgn}(\Delta p_{i}) \right] / \phi(V_{\varepsilon n} + fl_{n}) , (1)
\dot{p}_{1} = \left[F_{\delta 1} \sqrt{\frac{2|\Delta p_{1}|}{\varsigma \rho}} \operatorname{sgn}(\Delta p_{1}) - F_{1} \dot{z}_{1} \right] / \phi(F_{1}z_{1} + fl_{1})
\dot{p}_{2} = \left[F_{\delta 2} \sqrt{\frac{2|\Delta p_{2}|}{\varsigma \rho}} \operatorname{sgn}(\Delta p_{2}) - F_{2} \dot{z}_{2} \right] / \phi(F_{2}z_{2} + fl_{2})$$

где z_1, z_2 – координата поршня исполнительного цилиндра;

 F_1, F_2 – площадь поршня исполнительного цилиндра;

 m_1, m_2 – масса поднимаемого груза и подвижных частей, приведенная к поршню;

 P_{mp1}, P_{mp2} – сила трения;

 P_{1}, P_{2} – сила сопротивления массы поднимаемого груза;

 $p_{_H},p_1,p_2$ – давление в полости насоса, исполнительного гидроцилиндра, $\Delta p_1=p_{_H}-p_1; \Delta p_2=p_{_H}-p_2;$

 $Q_{\scriptscriptstyle H}$ – подача насоса;

 ϕ – коэффициент податливости рабочей жидкости;

 $V_{\it 2H}$ – объем гидравлического гасителя в цепи насоса;

k – показатель политропы;

f – площадь проходного сечения всех гидролиний;

 $l_{\scriptscriptstyle H}$ – длина гидролиний, соединяющих насос с гидравлическим гасителем и ЛП;

 l_1, l_2 – длина трубопровода от ДП до исполнительного гидроцилиндра;

ho – плотность рабочей жидкости;

 ζ – коэффициент местного сопротивления

При работе дискретного гидрораспределителя изменяются площади отводящих каналов $F_{\partial i} = f(t)$ (рис. 2).

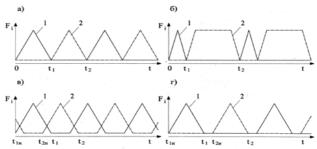


Рис. 2. Параметры дискретного гидрораспределителя:

 $1-F_{\partial 1}(t), 2-F_{\partial 2}(t)$ – площадь первого, второго отводящего канала;

t – время; $t_{i H}, t_i$ – время открытия и закрытия каналов i -го потребителя

При нулевом перекрытии каналов $t_{2H} = t_1$ и $t_{1H} = t_2$ (см. рис. 2, а, б) в интервалах времени $0-t_1$: $F_{\partial 1} = f_1(t)$, $F_{\partial 2} = 0$; и $t_1 - t_2$: $F_{\partial 1}=0$, $F_{\partial 2}=f_2(t)$. Дискретный гидрораспределитель запирает один из каналов в течение расчетного времени, при открытом втором. При положительном перекрытии каналов (см. рис. 2, в) в интервалах времени $t_{2_{\it H}}-t_{1}$ и $t_{1_{\it H}}-t_{2}$ оба канала одновременно открыты $F_{\partial 1} = f_1(t)$ и $F_{\partial 2} = f_2(t)$. Существует дифференциальная связь между напорными магистралями потребителей. Отрицательное перекрытие каналов (см. рис. 2, г) приводит к запиранию обоих каналов в интервалах времени $t_2 - t_{1\mu}$ и $t_1 - t_{2\mu}$. Точность деления потока рабочей жидкости по напорным магистралям потребителей максимальная. Изменение подачи рабочей жидкости по напорным магистралям потребителей достигается изменением параметров каналов 4, 5, приводящим к изменению значений интервалов времени $0-t_1$ и t_1-t_2 (см. рис. 2, б).

Реализация дискретного гидрораспределителя

Дискретный гидрораспределитель может быть выполнен как роторная гидромашина. Дискретный гидрораспределитель реализован в виде отдельного агрегата, установленного в напорной магистрали насоса [1] (рис. 3).

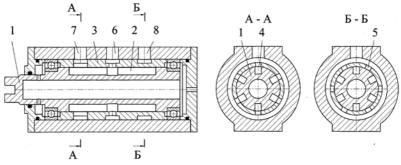


Рис. 3. Дискретный гидрораспределитель

Рабочая жидкость через канал 6 корпуса поступает в полости продольных пазов 2 ротора 1, откуда, периодически, через каналы

4, 5 распределительной втулки 3, – в магистрали потребителей, подключенные к каналам 7, 8 корпуса.

Изменение числа потоков достигается изменением числа групп продольных каналов распределяющей втулки, и каналов подключения контуров потребителей.

Предложены варианты привода ротора:

- дискретный гидрораспределитель устанавливается на фланец насоса. Ротор выполнен в виде силовой муфты, соединяющей валы насоса и привода;
- дискретный гидрораспределитель устанавливается в рациональном месте трансмиссии, с приводом ротора от любого вала;
- для привода ротора дискретный гидрораспределитель оснащается гидромотором, либо электрическим двигателем [3].

Дискретный гидрораспределитель может модульно наращиваться, обеспечивая одновременное дозирование различных потоков рабочей жидкости, оснащаться системами автоматического выключения при изменении режима работы гидросистемы.

Решение системы дифференциальных уравнений (1) в программе Mathcad 11 проводилось для двухпоточного дискретного гидрораспределителя, установленного в напорной магистрали насоса. Анализ работы двухмоторного привода показал:

- обеспечивается независимость нагрузочного режима работы контура данного потребителя от нагрузочного режима контура второго потребителя в широком диапазоне изменения нагрузок;
- увеличение дискретизации потока рабочей жидкости и частоты вращения ротора дискретного гидрораспределителя уменьшает неравномерность давления в напорных магистралях потребителей;
- параметры продольных пазов ротора и каналов распределительной втулки выбираются из условия отсутствия перекрытия;
- объем гидравлического гасителя $V_{\it 2H}$ должен быть минимальным, что предполагает установку дискретного гидрораспределителя возле насоса.

Перспективным может оказаться оснащение шестеренных (рис. 4), аксиально-поршневых насосов дискретным гидрораспределителем.

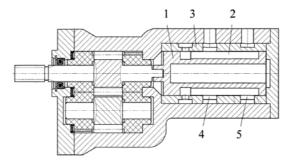


Рис. 4. Двухпоточный шестеренный насос

Рабочая жидкость качающего узла насоса поступает в полости продольных пазов 2 ротора 1, и периодически через каналы 4, 5 распределительной втулки 3 – в магистрали потребителей.

Реализация предложенной схемы гидравлического дискретного гидрораспределителя позволит уменьшить число насосов при создании гидравлических систем приводов ходового и технологического оборудования многофункциональных машин большой единичной мощности, исключить из системы приводов механические агрегаты, упростить разработку технологической машины, снизить ее стоимость.

Заключение

- 1. Использование дискретного гидрораспределителя в многомоторном приводе рабочих органов многофункциональных дорожно-строительных машин обеспечивает независимость работы контуров исполнительных гидромоторов.
- 2. Реализация предложенного принципа дискретизации потока рабочей жидкости насоса позволяет создать агрегаты дозирования объемного типа, обеспечивающие необходимые число потоков и параметры подачи рабочей жидкости по напорным магистралям потребителей.
- 3. Рациональным является объединение насоса и дискретного гидрораспределителя в единый насосный агрегат.
- 4. Увеличение дискретизации потока рабочей жидкости насоса положительно сказывается на параметрах работы многомоторного гидропривода.