пова О.П., Дитрих В.Н., Левин А.Н., Басов Н.И.) проводились на промышленном оборудовании. Такой методический подход, позволял получать сведения специфичные для конкретного оборудования, что затрудняло их использование для общего представления о процессах литья. Для устранения указанного сомнения была создана заново или привлечена из других отраслей техники необходимая аппаратура. Только успехи в создании такой научной аппаратуры и испытательных стендов определили опережающее проведение по сравнению с подобными исследованиями в те годы за рубежом.

Большое значение в разработке научных представлений по фундаментальным свойствам полимерных материалов имели труды проф. Гуля В.Е., проф. Гликмана, проф. Тагель А.А.

Разработка теплофизических процессов литья опиралась на монографии (которые актуальны и сегодня) проф. Гухмана А.А., академика Лыкова А.В, Михеева М.А, академика Вейника А.М.

Основой наших научных работ в области литья было количественно-модельное изучение процесса литья.

УДК 658.567.1

Утилизация упаковочных материалов методом пиролиза

Краснова О.А

Научный руководитель: ст. преподаватель Степаненко А.Б. Белорусский национальный технический университет

В настоящее время всё острее встаёт вопрос об утилизации упаковочных материалов. Так же активно мировым сообщество ведётся поиск альтернативных видов энергии. Решением этих проблем может стать пиролиз упаковочных материалов.

Пиролиз - это протекающий при высоких температурах деструктивный распад органических соединений с образованием продуктов с меньшей молекулярной массой (твёрдого остатка, смолы, подсмольной воды, газа).

В данной статье отражены результаты исследования пиролиза торфа, торфа с добавкой полипропиленовой плёнки используемой в качестве упаковки хлебобулочных изделий, а также торфа с упаковочным материалом «Пюр-Пак» используемого для розлива молочной продукции. Данные упаковочные материалы были выбраны с учётом их свойств: горючести, безопасности при сжигании и такого

аспекта, как частота их использования (количество их потребления). Пиролиз проводился на малогабаритной лабораторной установке в стационарном слое до конечной температуры 800 °C, скорость процесса пиролиза составляла 7,5 °C/мин.

В ходе эксперимента были отобраны и проанализированы газы названных выше образцов, рассчитана их теплота сгорания (таблица 1). Теплота сгорания, или теплотворная способность топлива (Q) – это количество тепла, выделяющееся при полном сгорании $1 \, m^3$ топлива $(\kappa \kappa a n / \, m^3)$. Из таблицы 1 видно, что теплота сгорания газа торфа увеличивается с добавлением упаковочных материалов, а это значит, что при пиролизе торфа с упаковочными материалами газы обладают большей калорийностью и при их сгорании выделится боль-ше энергии. Наибольшей теплотой сгорания обладает газ термической деструкции упаковочного материала «Пюр-Пак». Он отличается от других проб топлива т.к. в его составе большое содержание оксида углерода, непредельных соединений $(C_n H_m)$, водорода (H_2) , и предельных соединений (метана CH_4), что увеличивает теплоту сгорания газа (таблица 2). Такой газ является превосходным средством отопления жилых и промышленных помещений.

Таблица 1 – Теплота сгорания проб топлива

Наименование пробы	Q, Ккал/нм ³
Торф	2641
Торф +ПП	3104
Торф + «Пюр-Пак»	2895
«Пюр- Пак»	3193

Таблица 2 — Данные о составе газа отобранного при температуре $800\ ^{\circ}\mathrm{C}$

Наименование	Компонентный состав газа, %						
пробы	CO_2	C_nH_m	CO	H_2	CH_4		
Торф (Т)	37,42	0	17,87	28,76	15,95		
Торф +ПП	25,59	1,46	18,00	33,40	17,55		
Торф+«Пюр-Пак»	33,01	0,67	18,98	30,40	16,94		
«Пюр-Пак»	32,26	2,45	29,83	18,10	17,36		

Перед началом пиролиза были проведены испытания и определены влажность (ω , %), зольность (π , %) и выход летучих веществ отобранных проб (v, %) (таблица 3). Влажность — это количество влаги содержащейся в исходном сырье (топливе). Необходимо отметить, что влажность топлива снижает его теплоту сгорания, а также температуру горения, поэтому необходимо, чтобы она была минимальной. Зольность — это количество минеральных веществ содержащихся в исходном сырье. Определяется сжиганием проб в муфельной печи при температуре $800-850\,^{\circ}$ С. А выходом летучих называют содержание в исходной пробе летучих веществ.

Таблица 3 – Выход продуктов пиролиза торфа с добавками упаковочных материалов

Наимено-	Технические показатели			Продукты выхода пиролиза, %			
вание пробы	ω, %	π, %	v, %	Смола	Подсмольная вода	Кокс	Газ
Торф, %	10,1	9,4	69,4	22,27	9,09	39,55	29,09
Торф + ПП, %	8,5	8,7	65,9	26,88	8,60	34,95	29,57
Торф + «Пюр- Пак», %	9,0	9,1	63,1	25,22	5,40	40,54	28,84
«Пюр- Пак», %	4,0	0,97	86,9	40,80	25,35	17,36	16,49

Исходя из процентного соотношения продуктов пироза, самого калорийного газа (упаковочного материала «Пюр-Пак») в пробе содержится меньше всего (таблица 3) — 16,49 %, поэтому для его (газа) производства в промышленных масштабах потребуется в два раза больше материала «Пюр-Пак». Сам газ обладает приядным запахом копчения, а полученная смола вязкая, тягучая, шоколадного пвета.