Министерство образования Республики Беларусь БЕЛОРУССКАЯ ГОСУДАРСТВЕННАЯ ПОЛИТЕХНИЧЕСКАЯ АКАДЕМИЯ

Кафедра «Гидропневмоавтоматика и гидропневмопривод»

программа и методические указания

к контрольным работам по гидравлике, пневматике, гидропневмогриводам и гидропневмоавтоматике для студентов заочной формы обучения автогракторного факультета

УДК 62.525

Контрольные работы по гидравлике, пневматике, гидропневмоприводам и гидропневмоавтоматике содержат 400 вариантов заданий, каждое из которых является самостоятельным и охватывает основные разделы изучаемых дисциплин.

Контрольные работы предназначены для студентов заочной формы обучения автотракторного факультета.

Составители: Н.В.Богдан, А.В.Королькевич, В.А.Королькевич

Рецензент Б.В.Сабадах

© Богдан Н.В., Королькевич В.А., Королькевич А.В., составление, 2000

1. ОБЩИЕ ПОЛОЖЕНИЯ

Настоящая контрольная работа предназначена для студентов заочной формы обучения, изучающих гидравлику, пневматику, гидропневмопривод и гидропневмоавтоматику, специальностей:

- Т. 04.02 «Эксплуатация транспортных средств», дисциплина «Гидравлика и пневматика»;
- Т.04.03 «Организация движения и управления на транспорте», дисциплина «Прикладная гидравлика и пневматика»:
- Т. 15.06 «Колесные машины», дисциплина «Гидравлика, гидропривод и гидропневмоавтоматика».

Контрольные работы составлены на основе рабочих программ дисциплин. Рабочие программы перечисленных дисциплин объединены в общую программу.

2. ОБЩАЯ РАБОЧАЯ ПРОГРАММА

2.1. Вводные сведения, основные физические свойства жидкостей и газов

Предмет механики жидких сред. Примеры гидромеханических задач из отраслей техники. Краткие исторические сведения о развитии науки.

Объект изучения, физическое строение жидкостей и газов. Гипотеза сплошности. Основные физические свойства: сжимаемость, текучесть, вязкость. Два режима движения жидкостей и газов. Ньютоновские жидкости. Растворимость газов в жидкостях, кипение, кавитация. Требования к жидкостям.

2.2. Основы кинематики

Два метода описания движения жидкостей и газов. Понятие о линиях и трубках тока. Расход элементарного потока и расход через поверхность. Уравнение неразрывности (сплошности).

2.3. Общие законы и уравнения статики и динамики жидкостей и газов

- 2.3.1. Силы, действующие в жидкостях; напряжения поверхностных сил.
- 2.3.2. Абсолютный и относительный покой жидких сред. Уравнения Эйлера и их интегралы. Основная формула гидростатики. Определение сил давления покоящейся среды на плоские и криволинейные стенки. Относительное равновесие жидкости.
- 2.3.3. Модель идеальной (невязкой) жидкости. Уравнение Бернулли. Напряжения сил вязкости, обобщенная гипотеза Ньютона. Уравнение Бернулли для вязкой жидкости. Уравнение Бернулли для относительного движения.
- 2.3.4. Подобие гидромеханических процессов. Числа и критерии подобия, Методы моделирования. Понятие о методе размерностей.
 - 2.3.5. Основные гипотезы о турбулентных напряжениях.

2.4. Одномерные потоки жидкостей и газов

- 2.4.1. Одномерная модель и приведение к ней плавноизменяющихся течений. Обобщение уравнения Бернулли. Гидравлические сопротивления, их физическая природа и классификация. Структура формул для вычисления потерь энергии (напора). Основная формула равномерного движения.
- 2.4.2. Сопротивления по длине, основная формула потерь. Данные о гидравлическом коэффициенте трения. Зоны сопротивления. Ламинарный поток в трубе и приведение его к одномерной модели. Турбулентное течение в трубах, физическая природа турбулентных напряжений и их представление на основе полуэмпирических теорий. Законы распределения скоростей и сопротивлений при турбулентных течениях в трубах. Наиболее употребительные формулы для гидравлического коэффициента трения.
- 2.4.3. Местные гидравлические сопротивления, основная формула; зависимость коэффициента местного сопротивления от числа Рейнольдса и геометрических параметров. Частные виды местных сопротивлений: вход в трубу, внезапное расширение, диффузоры и др.
- 2.4.4. Истечение жидкости через отверстия и насадки. Расчет трубопроводных систем: простые трубопроводы, сложные трубо-

проводы. Силовое воздействие потока на ограничивающие его стенки.

- 2.4.5. Гидравлический удар в трубах, формулы Жуковского.
- 2.4.6. Изотермическое и адиабатное движение газа в трубах. Основы расчета газопроводов при малых и больших перепадах давлений.
 - 2.4.7. Течение двухфазных сред.

3. СПЕЦИАЛЬНЫЕ РАЗДЕЛЫ ДИСЦИПЛИНЫ

3.1. Гидравлические машины

Общие сведения о гидромащинах. Классификация насосов и гидродвигателей. Принцип действия динамических и объемных машин. Основные параметры: подача (расход), давление (напор), мощность, КПД. Баланс мощности в гидромащинах.

3.2. Лопастные насосы

- 3,2.1. Основы теории лопастных насосов. Центробежные насосы. Характеристики центробежных насосов. Основы теории подобия и формулы пересчета. Коэффициент быстроходности и типы лопастных насосов.
- 3.2.2. Насосные установки. Последовательное и параллельное соединение насосов.

3.3. Гидродинамические передачи

- 3.3.1. Назначение и области применения гидродинамических передач. Принцип действия и классификация. Рабочие жидкости. Гидродинамические муфты, устройство и рабочий процесс гидромуфты. Основные параметры, уравнения, характеристики.
- 3.3.2. Совместная работа гидромуфты с двигателем. Регулирование гидромуфт.
- 3.3.3. Гидродинамические трансформаторы, устройство, классификация, рабочий процесс и уравнения. Внешние характеристики гидротрансформаторов различных типов. Формулы подобия для гидротрансформаторов и их применение.

3.4. Объемные насосы

Общие сведения, принцип действия, основные свойства и классификация, области применения. Насосы возвратно-поступательного действия. Устройство и области применения поршневых, плунжерных и диафрагменных насосов. Графики подачи и способы ее выравнивания.

Общие свойства, классификация и области применения роторных насосов. Подача роторных насосов и ее равномерность, регулирование подачи. Устройство и особенности роторных насосов различных типов: шестеренных, пластинчатых, роторно-поршневых, винтовых, коловратных.

3.5. Объемный гидропривод и средства гидроавтоматики

- 3.5.1. Принцип действия объемного гидропривода. Классификация объемных гидроприводов по характеру движения выходного звена и другим признакам; элементы гидропривода (гидродвигатели, гидроаппаратура, фильтры, гидроаккумуляторы, гидролинии).
- 3.5.2. Гидродвигатели. Силовые гидроцилиндры, их назначение и устройство. Расчет цилиндров. Поворотные гидродвигатели.
- 3.5.3. Роторные гидродвигатели гидромоторы. Обратимость роторных насосов и гидромоторов. Гидромоторы роторнопоршневых, пластинчатых, шестеренных и винтовых типов. Расчет крутящего момента и мощности на валу гидромотора. Регулирование рабочего объема. Высокомоментные гидромоторы.
- 3.5.4. Гидроаппаратура и элементы гидроавтоматики. Распределительные устройства: назначение, принцип действия и основные типы. Клапаны: принцип действия, устройство и характеристики. Дроссельные устройства, назначение, принцип действия и характеристики. Фильтры, гидроаккумуляторы. Обозначение гидроаппаратов и элементов гидроавтоматики по ЕСКД.
- 3.5.5. Схемы гидропривода и системы гидроавтоматики. Схемы гидропривода с замкнутой циркуляцией, с дроссельным и объемным регулированием скорости. Сравнение различных способов регулирования скорости гидропривода. Стабилизация скорости. Синхронизация движения нескольких гидродвигателей.

3.5.6. Следящий гидропривод. Назначение, принцип действия, схема и области применения следящего гидропривода в системах автоматического управления. Чувствительность, точность и устойчивость гидроусилителей.

3.6. Пневмопривод и средства пневмоавтоматики

- 3.6.1. Основные элементы и схемы пневмоприводов. Пневматические распределительные устройства. Пневматические двигатели. Источники сжатого газа. Пневматический привод с поршневым двигателем и дроссельным регулированием. Пневматические приводы с роторными и турбинными пневмодвигателями.
- 3.6.2. Универсальная система элементов промышленной пневмоавтоматики. Струйные системы пневмоавтоматики. Пневматические элементы вычислительных устройств. Системы струйных элементов.

4. ОБШИЕ ТРЕБОВАНИЯ

- 4.1. Студенты, изучающие дисциплину «Гидравлика и пневматика», выполняют контрольную работу, в состав которой входят задачи из разделов 1, 2 и 4, дисциплину «Прикладная гидравлика и пневматика» - задачи из разделов 1, 2 и 4, дисциплину «Гидравлика, гидропривод и гидропневмоавтоматика» - задачи из разделов 1, 2 и 3.
- 4.2. Вариант контрольной определяется по двум последним цифрам шифра зачетной книжки студента. По таблице заданий определяются номера и варианты задач, подлежащих выполнению. Полная нумерация задач включает в себя номер раздела (X...), номер задачи (...XX...) и вариант задачи (...X).

Например, при шифре зачетной книжки 301425/362 и наименовании дисциплины «Гидравлика и пневматика» студент должен выполнить контрольную работу по варианту 62, состоящую из задач 1.01.3, 2.18.4 и 4.05.4.

- 4.3. Замена варианта задания или отдельных задач не допускается.
- 4.4. Контрольная работа должна содержать полные номера и условия задач и их подробные решения. Оформление должно быть

четким и аккуратным, кратким и разборчивым. Работа может быть оформлена на бумаге формата А4 или в тетради.

4.5. Все контрольные работы подлежат рецензированию преподавателями кафедры «Гидропневмоавтоматика и гидропневмопривод». Рецензирование контрольных работ проводится в пятидневный срок с момента их поступления на кафедру из деканата.

Контрольная работа считается выполненной при правильном решении всех входящих в нее задач и качественном ее оформлении. Контрольные работы, выполненные с несущественными замечаниями, подлежат личной защите студентами до дня сдачи экзамена или зачета.

Работы, по которым имеются существенные замечания, связанные с неправильностью решения задач (задачи), возвращаются студентам для доработки, при этом необходимы повторное рецензирование и защита. Работы, выполненные небрежно, с нарушениями вариантов, возвращаются студентам без рецензирования.

- 4.6. Защита контрольных работ во время сдачи учебной группой экзамена или зачета не допускается.
- 4.7. Справки о результатах рецензирования контрольных работ студенты могут получить по телефону 2-32-84-37 или непосредственно на кафедре «Гидропневмоавтоматика и гидропневмопривод» БГПА (учебный корпус № 8, а.703).

	Залания	ĸ	контрольным	работам
--	---------	---	-------------	---------

Вари-	Зари- Задачи				Вари-	Задачи				
анты	1	2	3	4	анты	1	2	3	4	
1	2	3	4	5	6	7	8	9	10	
01	05.1	02.1	02.5	01.1	10	03.1	11.2	15.5	04.2	
02	01.1	07.4	19.5	01.5	11	10.1	15.1	03.1	05.1	
03	08.4	06.2	11.1	01.3	12	14.5	13.4	07.2	05.3	
04	06.5	16.1	20.1	02,2	13	19.1	08.1	12.3	05.5	
05	18.4	10.1	06.3	02.4	14	04.1	18.3	14.1	06.2	
06	09.3	17.2	17.1	03.1	15	15.1	02.2	04.5	06.4	
07	12.2	12.4	18.2	03.3	16	11.3	19.2	11.3	07.1	
08	17.1	09.5	12,1	03.5	17	18.5	20.4	09.1	07.3	
09	20.4	07.5	13.2	04.4	18	01.2	11.1	18.1	07.5	

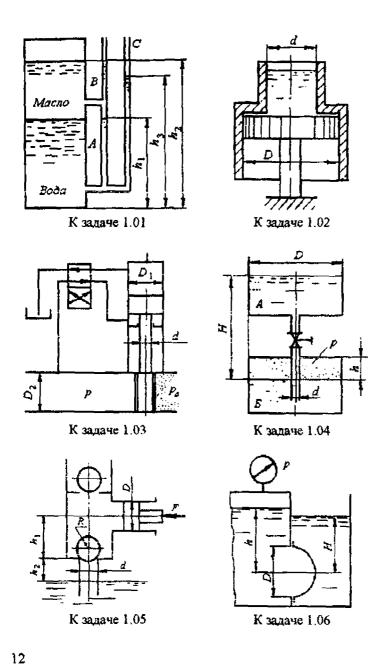
	2	3	4	5	6	7	8	9	10
19	20.5	19.3	06.4	08.2	53	03,3	12.1	12.2	02.1
20	13.1	08.5	19.5	08.4	54	17.3	17.3	13.4	02.3
21	19.2	19.1	20.5	09.1	55	06.4	04.4	04.4	02.5
22	05.3	14.1	11.4	09.3	56	12.1	10.2	11.2	03.2
23	16.1	10.3	06.5	09.5	57	18.3	05.5	18.3	03.4
24	17.2	18.5	15.3	10.2	58	05.2	08.2	02.4	04.1
25	02.5	02.4	03.4	10.4	59	07.2	14.2	17.2	09.3
26	15.4	15.3	10.3	11.1	60	15.4	11.3	10.1	04.5
27	14.1	12.3	09.3	11.3	61	11.4	02.3	15.4	05.2
28	10.3	08.3	01.1	11.5	62	01.3	18.4	10.2	05.4
29	18.1	17.1	07.4	12.2	63	16.4	12.2	06.1	06.1
30	15.5	16.5	05.3	12.4	64	03.2	01.4	20.3	06.3
31	08.1	06.1	13.1	13.1	65	10.2	15.2	01.2	06.5
32	20.3	14.5	10.4	13.3	66	19.3	03.5	13.3	07.2
33	12.3	04.1	16.5	13.5	67	02.4	14.3	07.3	07.4
34	03.5	07.3	17.3	14.2	68	15,3	17.4	03.2	08.1
35	13.5	05.1	18.4	14.4	69	07.1	04.5	05.1	08.3
36	07.5	09.1	02.1	15.4	70	08.5	16.2	09.2	08.5
37	17.4	06.3	12.5	15.3	71	11.2	11.4	11.5	09.2
38	09.1	13.3	10.5	15.5	72	13.2	13.5	03.5	09.4
39	16.3	03.4	16,3	16.2	73	05.4	05.4	14.2	10.1
40	09.1	18.2	08.4	16.4	74	12.3	09.4	20.4	10.3
41	02.1	15.5	05.4	17.1	75	16.2	17.5	06.2	10.5
42	14.3	07.1	01.4	17.3	76	01.4	12.5	15.2	11.2
43	06.1	10.5	19.1	1.75	77	18.2	08.4	01.3	11.4
44	11.5	04.3	04.2	18.2	78	09.4	19.4	13.5	12.1
45	09.5	06.5	18.5	18.4	79	19.4	10.4	08.1	12.3
46	13.4	09.2	14.4	19.1	80	07.3	16.4	05.2	12.5
47	04.3	01.1	16.1	19.3	81	06.3	01,3	17.5	13.2
48	20.2	14.4	08.2	19.5	82	19.5	20,1	03.3	13.4
49	02.3	03.1	09.4	20.2	83	10.5	20.2	09.2	14.1
50	06.2	13.1	17.4	20.4	84	04.2	05.2	02.3	14.3
51	16.5	01.5	20.2	01.4	85	07.4	20.3	19.4	14.5
52	08.3	20.5	07.1	01.2	86	14,1	03.2	04.3	15.2

1	2	3	4	5	6	7	8	9	10
87	01.5	13.2	01.5	15.4	94	09.2	16.3	15.1	18.3
88	20.1	07.2	16.4	16.1	95	12.4	05.3	16.2	18.5
89	05.5	06.4	08.3	16.3	96	02.2	11.5	02.2	19.2
90	17.5	18.1	07.5	16.5	97	11.1	02.5	09.5	19.4
91	03.4	03.3	04.1	17.2	98	08.2	15.4	19.2	20.1
92	10.4	04.2	14.2	17.4	99	14.2	09.3	08.5	20.3
93	04.4	01.2	14.3	18.1	100	18.1	19.5	19.3	20.5

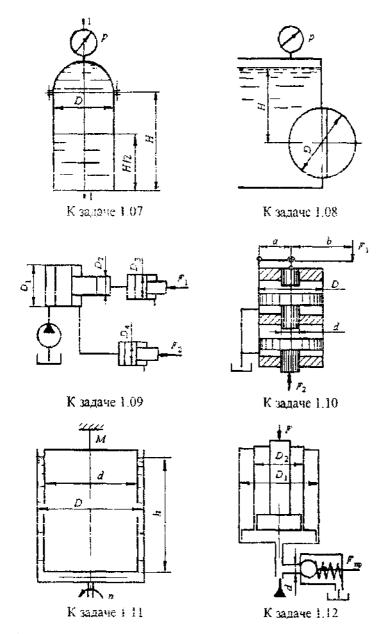
Раздел 1. ЗАДАЧИ ПО ГИДРОСТАТИКЕ

- 1.01. В цилиндрическом отстойнике положение поверхности раздела между маслом и осевщей водой определяется по уровню воды в трубке A, а уровень масла по уровню в трубке B.
- 1. Определить плотность масла, если даны величины h_1 и h_2 , а уровень воды в дополнительной трубке С установился на высоте h_3 .
- 2. Найти высоту уровней h_1 , h_2 и h_3 в трубках, если при тех же объемах воды и масла в отстойнике над маслом создано избыточное давление р.
- 1.02. Покоящийся на неподвижном поршне и открытый сверху и снизу сосуд массой m состоит из двух цилиндрических частей, внутренние диаметры которых D и d.

Определить, какой минимальный объем воды должен содержаться в верхней части сосуда, чтобы сосуд всплыл над поршнем.


- 1.03. Определить диаметр D_1 гидравлического цчлиндра, необходимый для подъема задвижки при избыточном давлении жидкости р, если диаметр штока цилиндра d, диаметр трубопровода D_2 и масса подвижных частей устройства m. Коэффициент трения задвижки в направляющих поверхностях f=0.3, механический КПД гидроцилиндра $\eta_{\text{мех}}=0.9$. Давление за задвижкой равно атмосферному $\rho_{\text{м}}$.
- 1.04. К отверстию в дне открытого резервуара А, частично заполненного водой, присоединена вертикальная труба, нижним концом опущенная под уровень воды в резервуаре Б.

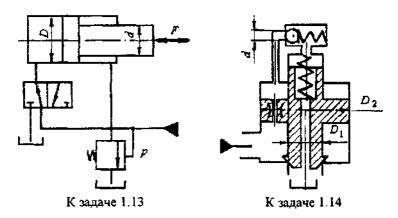
При закрытой задвижке труба заполнена водой; расстояние между уровнями воды в резервуарах H; избыточное давление воздуха P в резервуаре Б; толщина воздушной полушки h.

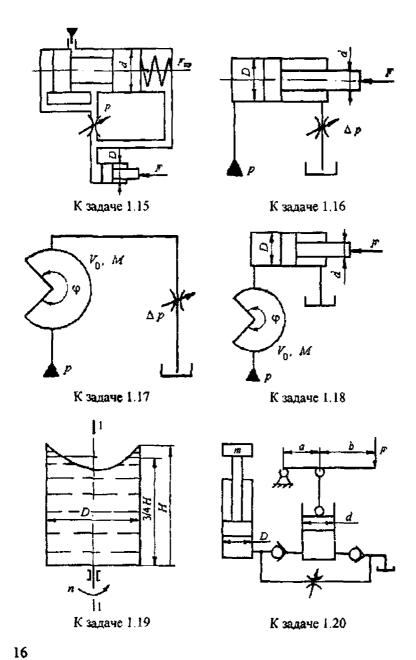

Определить, какой объем воды переместится из одного резервуара в другой после открытия задвижки на трубе.

Процесс расцирения воздуха в резервуаре Б считать изотермическим. Диаметры резервуаров одинаковы: D = 1м, диаметр трубы d = 0.2 м.

- 1.05. Определить силу, прижимающую стальной ($\rho = 7800 \text{ кг/м}^3$) шаровой всасывающий клапан радиусом R к седлу, имеющему диаметр d = 140 мм, если диаметр насосного цилиндра D, а усилие, действующее на шток поршня, F. Седло клапана расположено ниже оси цилиндра на h₁ и выше свободной поверхности в резервуаре с атмосферным давлением на h₂, причем труба под клапаном заполнена водой.
- 1.06. Круглое отверстие между двумя резервуарами закрыто сферической крышкой диаметром D. Закрытый резервуар заполнен бензином ($\rho = 800~{\rm kr/m}^3$), а открытый водой. К закрытому резервуару сверху присоединен мановакуумметр, показывающий манометрическое давление $P_{\rm M}$ или величину вакуума $p_{\rm B}$. Температура жидкостей $20^{\circ}{\rm C}$, глубины H и h. Определить силу, срезающую болты крышки, и горизонтальную силу, действующую на крышку.
- 1.07. Вертикальная цилинарическая цистерна с полусферической крышкой до самого верха заполнена глицерином ($\rho = 1200 \text{ кг/м}^3$) и водой ($\rho = 1000 \text{ кг/м}^3$). Диаметр цистерны D, высота ее цилинарической части H. Глубина глицерина равна H/2. Манометр показывает давление р. Определить силу, растягивающую болты крышки, силу давления на дно цистерны и горизонтальную силу, разрывающую цистерну по сечению 1 1.
- 1.08. Определить суммарную силу давления воды на цилиндрический затвор диаметром D, шириной b, если H = 1,5D, давление на свободной поверхности p.
- 1.09. Насос под давлением р подает рабочую жидкость во входную камеру гидравлического дозатора, диаметр цилиндров которого D_1 и $D_2=0.4D_1$. Гидроцилиндр с диаметром поршня D_3 реализует нагрузку F_1 , с диаметром $D_4=0.4D_3$ нагрузку F_2 . Определить неизвестную величину.
- 1.10. Ручной гидропресс содержит поршни диаметрами D и d. Усилие на рукоятке F_1 , усилие, развиваемое гидропрессом, F_2 , соотношение размеров рычага рукоятки b/a = 5. Определить неизвестную величину.

- 1.11. Испытуемая жидкость заливается между двумя цилиндрическими поверхностями диаметрами D и d = D 2мм. Определить кинематический коэффициент вязкости жидкости, плотность которой $\rho = 900$ кг/м³, если для вращения внутреннего цилиндра с частотой п необходим крутящий момент М. Высота цилиндров h = 150 мм.
- 1.12. Определить усилие, развиваемое телескопическим гидроцилиндром в начале и в конце рабочего хода. Диаметры поршней гидроцилиндра D_1 и D_2 . К гидроцилиндру присоединен предохранительный клапан с диаметром подводящего отверстия d=10 мм и усилием пружины F_{np} .
- 1.13. Штоковая полость гидроцилиндра с диаметром поршня D постоянно соединена с напорной гидролинией насоса, а поршневая в зависимости от направления движения поршня соединяется распределителем либо с напорной, либо со сливной гидролиниями. Давление р в напорной гидролинии поддерживается предохранительным клапаном. Определить диаметр штока d и силу F при условии равенства сил F по всличине при движении поршня в обоих направлениях.
- 1.14. Напорный клапан непрямого действия состоит из двух клапанов: шарикового и конического. Диаметр входного отверстия шарикового клапана D_1 и D_2 . Шариковый клапан открывается при давлении p_1 , конический при давлении $p_2 = p_1 + 0.5$ МПа. Определить рабочее усилие пружин обоих клапанов. Описать работу клапана непрямого действия.
- 1.15. Поршень гидроцилиндра диаметром D нагружен силой F. Определить давление р перед дросселем, если диаметр золотника редукционного клапана d, а усилие его пружины F_{np} . Дать описание работы регулятора расхода.
- 1.16. В поршневую полость гидроцилиндра диаметром D (диаметр штока d) подается давление р. На сливе из штоковой полости установлен дроссель, имеющий гидравлическое сопротивление Δ р. Шток поршня нагружен усилием F. Механический КПД гидроцилиндра $\eta_{\rm M}=0.9$. Определить неизвестный параметр.




- 1.17. К поворотному гидродвигателю рабочим объемом V_0 с углом поворота вала $\varphi \approx 270^\circ$ подведено давление р. В сливной гидролинии установлен дроссель с гидравлическим сопротивлением Δp . Момент на валу гидродвигателя M, механический КПД $\eta_M = 0.9$. Определить неизвестный параметр.
- 1.18. В поворотный гидродвигатель рабочим объемом V_0 с углом поворота вала $\varphi=270^\circ$ подается поток жидкости под давлением р Гидродвигатель соединен последовательно с гидроцилиндром, диаметры поршня D и штока d=40 мм. Вал двигателя нагружен моментом M, шток поршня усилием F. Определить неизвестный параметр.
- 1.19. Цилиндрический резервуар заполнен жидкостью до высоты 3/4 Н. Диаметр резервуара D, плотность жидкости $\rho = 1000$ кг/м³.

Определить: объем жидкости, сливающейся из резсрвуара при его вращении с частотой и об/мин вокруг его вертикальной оси; силу давления на дно резервуара;

горизонтальную силу, разрывающую резервуар по сечению 1-1 при его вращении.

1.20. Определить диаметр D поршня гидроцилиндра домкрата, предназначенного для подъема груза массой m при диаметре d поршня насоса и усилии F на рукоятке, соотношение b/a = 4.

Исходные данные к задачам 1.01.1 - 1.20.5

20,000	Поменти		Вар	ианты за	дач	
Задача	Параметры	l	2	3	4	5
<u>1</u>	2	3	4	5	6	7
1.01	h ₁ , м	0,2	0,3	0,4	0,5	0,6
!	h₂, м	1,4	2,4	1,2	1,8	2,0
}	h3, м	1,2	2,2	0,9	1,5	1,8
.	р, кПа	0	0,01	0,001	0,005	0,002
1.02	т, кг	16	10	20	50	100
1	D, м	0,5	0,3	0,4	0,6	0,8
	<u>d, м</u>	0,3	0,1	0,2	0,3	0,4
1.03	m, кг	200	100	150	300	400
l l	D ₂ , м	1	0,5	1	0,8	1,5
	p, MI la	1	2	0,5	1,5	5
1.04	р, кПа	0,06	0,1	0,02	1	0,08
1	Н, м	2	3	1	10	4
	<u>h, м</u>	0,5	0,2	_ 0, i	0,3	0,8
1.05	F, H	4000	5000	2000	10000	8000
	R, mm	100	80	90	120	110
H D	D, мм	350	300	200	400	500
	h ₁ , м	0,5	1	0,6	0,2	1,5
<u></u>	h ₂ , м	6,5	7	5	4	88
1.06	D, mm	200	400	600	800	1500
]	Н, м	0	0,200	0,250	0,5	80
<u> </u>	h , м	i	1,5	2	0,5	3
l k	рм, МПа	0,045		0,05		0,1
	рв, кПа	0,015	11	0,17.7	5	0,1
1.07	Д, м	1,5	2	2,5	3,2	3,8
į	Н, м	2	2,5	3	4,8	6,5
	рм, МПа	0,1	0,08	0,06	0,04	0,01
1.08	Ъ, м	3	2,5	2	4,5	3,5
	b , м	4	3	3,5	4,5	5
	р _м , МПа	0,02	0,01	0,005	0,03	0,05

1	2	3	4	5	6	7
1.09	D ₁ , мм	100	120	150	80	100
	D ₃ , mm	60	100	80	?	120
	F ₁ , kH	10	?	30	50	100
l i	F ₂ , κΗ	1,6	2	50	10	?
	р, МПа	?	6	?	16	20
1.10	D, мм	100	80	60	?	50
	d, mm	50	30	?	50	20
	F ₁ , kH	?	0,1	0,2	0,2	0,15
	F ₂ , κΗ	10	?	10	5	?
1.11	D, mm	200	180	150	220	250
	n, об/мин	180	200	250	300	400
	М, Нм	5	10	8	6	15
1.12	D_1 , mm	150	200	100	120	180
	D ₂ , мм	100	160	60	90	150
	$_{\rm F_{np}}$, H	1000	500	600	700	800
1.13	D, мм	100	80	60	120	150
\	р, МПа	10	8	6	12	15
1.14	d, мм	1,8	2,0	2,2	2,5	2,8
1	D ₁ , MM	25	30	32	35	40
ł	D ₂ , MM	10	12	14	16	18
	p_1 , $M\Pi a$	20	18	16	25	30
1.15	D, мм	80	90	100	110	120
] d, мм	25	28	30	35	40
l l	F, ĸH	5	6	8	10	12
<u></u>	F _{np} , H	300	250	200	350	450
1.16	D, MM	?	100	120	150	180
k	d, mm	20	?	30	30	40
	p, MIIa	10	20	?	16	32
	Δp, MΠa	5	10	15	?	20
	F, ĸH	1,0	10	20	15	?
1.17	V ₀ , см ³	500	?	800	1000	1200
ł	р, МПа	16	10	20	?	10
	∆р, МПа	?	5	10	12	6
	М, Нм	600	200	?	1000	?

1	2	3	4	5	6	7
1.18	V_0 , cm ³	?	500	800	1000	1200
	D, мм	50	?	80	100	120
	р, МПа	20	30	?	30	40
	М, Нм	200	600	800	?	1000
	F, ĸH	1	2	3	5	?
1.19	D, мм	200	300	500	800	1200
(Н, мм	400	500	800	1200	1500
	n, об/мин	200	180	150	120	100
1.20	m, Kr	500	800	1000	3000	1500
Ī	d, mm	15	10	12	30	18
	F, H	100	120	150	200	180

Раздел 2. ЗАДАЧИ ПО ГИДРОДИНАМИКЕ

- 2.01. Сопротивление участка водопроводной трубы с арматурой необходимо перед установкой проверить в лаборатории путем испытаний на воздухе.
- 1. Определить, с какой скоростью $v_{\rm H}$ следует вести продувку, сохраняя вязкостное подобие, если скорость воды в трубе v.
- 2. Какова будет потеря напора h_R при работе трубы на воде с указанной скоростью, если при испытании на воздухе потеря давления Δ_0 ?

Вязкость воздуха $\mu_{BO3} = 0.186 \cdot 10^{-4}$ Па · с, воды $\nu_{BOД} = 1 \cdot 10^{-6} \, \text{м}^2/\text{c}$, плотность воздуха $\rho = 1.29 \, \text{кг/м}^3$.

2.02. Определить, до какого наибольшего избыточного давления ри сжатого воздуха над поверхностью бензина в баке истечение через цилиндрический насадок будет происходить с заполнением его выходного сечения. Каков при этом будет массовый расход бензина, если диаметр насадка d? Уровень бензина в баке h.

Плотность бензина $\rho=750~{\rm kr/cm}^3$, давление насыщенных паров $p_{\rm B.n.}=26,5~{\rm k}$ Па. Атмосферное давление равно 97 кПа. Принять коэффициент расхода насадка $\mu=0,81$, коэффициент сжатия струи при входе в насадок $\xi=0,62$.

2.03. Вода из верхней секции замкнутого бака перетекает в нижнюю через отверстие диаметром d_1 , а затем через цилиндрический насадок диаметром d_2 вытекает: в атмосферу; под уровень.

Определить расходы Q через насадок для обоих случаев, если при установившемся режиме показание манометра p_{m} , а уровни в водомерных стеклах $h_{1}=2$ м и $h_{2}=3$ м.

Найти при этом избыточное давление p_x над уровнем воды в нижней секции бака.

- 2.04. Определить скорость υ перемещения поршня гидротормоза диаметром D, нагруженного силой F, если перетекание жидкости из нижней полости в верхнюю происходит через два отверстия в поршне, диаметр которых d, высота поршня a = 35 мм.
- 2.05. Вода перетекает из левого бака в правый по трубопроводу, диаметры которого $d_1 = 100$ мм и $d_2 = 60$ мм. Определить, пренебрегая потерями по длине, расход Q в трубопроводс при располагаемом напоро H и коэффициенте сопротивления вентиля ξ^* . При каком значении ξ расход умоньшится в два раза?
- 2.06. Труба диаметром D имеет на конце сходящийся насадок с горловиной диаметром d (коэффициент сопротивления $\xi=0.08$), переходящий в диффузор (коэффициент потерь $\varphi_{\rm A}=0.3$), из которого вода вытекает в атмосферу.

Какой расход Q надо пропустить по трубе и какое при этом будет избыточное давление р перед насадком, чтобы в горловину начала поступать вода, подсасываемая на высоту h из открытого сосуда?

2.07. Гидравлический демпфер (гаситель колебаний) представляет цилиндр, в котором под действием внешней силы перемещается поршень, перегоняя масло плотностью $\rho = 900 \text{ кг/м}^3$ из одной полости цилиндра в другую через обводную трубку с дросселем. Диаметры поршня D, штока $d_{\text{вит}} = 20 \text{ мм}$ и обводной трубки d.

Получить уравнение статической характеристики демпфера, представляющей зависимость скорости равномерного движения поршня υ от приложенной к нему постоянной нагрузки R. Каков должен быть коэффициент сопротивления ξ дросссля, чтобы при нагрузке R = 6500 H скорость поршня была $\upsilon = 0.2$ м/с?

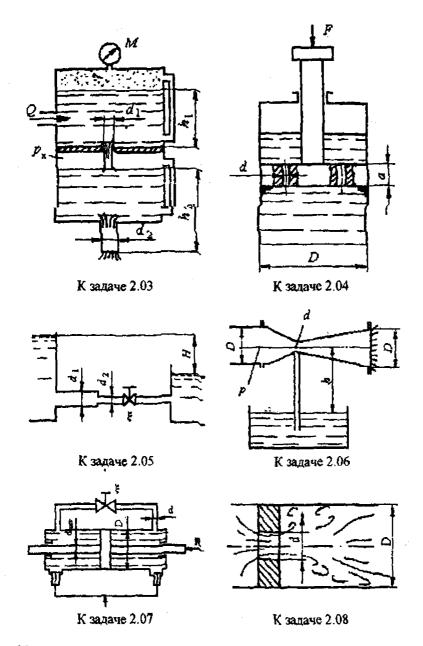
2.08. В трубопроводе диаметром D для ограничения расхода установлена дроссельная шайба, имеющая центральное отверстие с острой входной кромкой; диаметр отверстия d. Определить потерю давления Δp , вызываемую шайбой в трубопроводе при расходе Q жидкости (керосин плотностью $\rho = 800 \text{ кг/м}^3$). Для заданного расхода найти критическое абсолютное давление p_0 перед шайбой, при котором в трубопроводе за шайбой возникнет кавитация, если давление насыщенных паров керосина $p_{\text{н.п.}} = 16 \text{ кПа}$.

Отверстие шайбы имеет коэффициент сопротивления $\xi = 0.63$.

2.09. Найти, как распределяется расход воды Q между двумя параллельными трубами, одна из которых имеет длину $l_1 = 30$ м и диаметр d_1 , а другая (с задвижкой, коэффициент сопротивления которой ξ) имеет длину $l_2 = 50$ м и диаметр d_2 .

Какова будет потеря давления в разветвленном участке? Значения коэффициента сопротивления трения труб принять соответственно $\lambda_1=0.04$ и $\lambda_2=0.03$.

2.10. В первоначально пустой бак квадратного сечения со стороной а = 800 мм подается постоянный расход воды Q. Одновременно поступающая вода вытекает через донное отверстие диаметром d (коэффициент расхода отверстия μ = 0,6).


Каков предельный уровень Z_{max} , соответствующий установившейся работе системы?

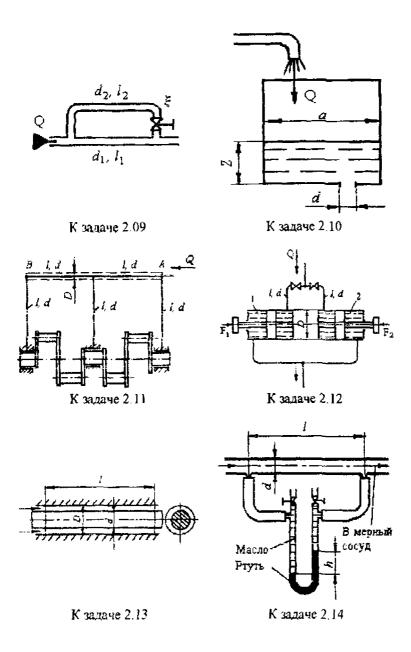
Какое время требуется, для того чтобы разность между Z_{max} и текущим уровнем Z стала $\Delta Z = 0.1$ м?

2.11. Смазочное масло (плотность $\rho = 900$ кт/м³, вязкость $v = 6 \cdot 10^{-6}$ м²/с) подводится к подшипникам коленчатого вала по системе трубок, состоящей из пяти одинаковых участков, каждый длиной 1 = 500 мм и диаметром d.

Сколько смазки нужно подать к узлу A системы, чтобы каждый подшипник получил ее не менее Q_1 ?

Как изменится количество смазки, если участок AB заменить трубой диаметром D? Давление на выходе из трубок в подшипники считать одинаковым, местными потерями и скоростными напорами пренебречь.

2.12. Перемещение поршней гидроцилиндров диаметром D, нагруженных внешними силами F_1 и F_2 , осуществляется подачей спирто-глицериновой смеси ($v = 1 \cdot 10^{-4} \text{ м}^2/\text{c}$, $\rho = 1245 \text{ кг/м}^3$) по трубкам одинаковой приведенной длины l = 10 м и диаметром d в гидроцилиндры 1 и 2.


Определить скорости перемещения поршней при расходе Q = 7 л/с в магистрали

Какое дополнительное сопротивление, выражаемое эквивалентной длиной, и в какой трубе нужно создать, чтобы при том же расходе в магистрали скорости поршней стали одинаковыми?

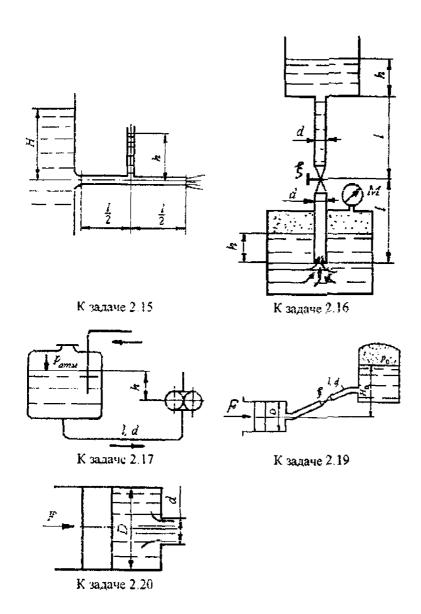
- 2.13. В межтрубном кольцевом пространстве движется жидкость ($\mu = 0.01~\mathrm{Ha}\cdot\mathrm{c}$) в количестве Q. Определить потери давлення р на длине l=3 м, если диаметр трубки D, диаметр стержня d. Сравнить ее с потерей в трубе, имеющей равновеликую площадь сечения.
- 2.14. Для определення вязкости масла измеряется потеря напора при его прокачке через калиброванную трубку диаметром d. Каково значение динамического коэффициента вязкости μ , если при расходе Q показание ртутного дифманометра, подключенного к участку трубки длиной 1=2 м, равно величине h? Плотность масла $\rho=900$ кг/м³.
- 2.15. При истечении воды из большого резервуара в атмосферу по горизонтальной трубе, диаметр которой d и длина 1 = 10 м, при статическом напоре H получено, что уровень в пьезометре, установленном в середине трубы, h.

Определить расход Q и коэффициент λ сопротивления трения трубы.

2.16. Вода подается в открытый верхний бак по вертикальной трубе диаметром d, длиной 1 за счет избыточного давления p в нижнем замкнутом баке. Высота уровней в баках h, расход в трубе Q, коэффициент сопротивления открытого вентиля $\xi = 9,3$, шероховатость стенок трубы $\Delta = 0,2$ мм. Определить неизвестную величину.

2.17. Определить абсолютное давление на входе в шестеренный насос системы смазки, имеющий подачу Q масла при температуре $t=20^{\circ}\text{C}$ ($v=2\cdot10^{-4}$ м²/с, $\rho=920$ кг/м³). Длина стального всасывающего трубопровода l=1 м, диаметр d, шероховатость $\Delta=0,1$ мм. Входное сечение насоса расположено ниже свободной поверхности в баке на величину h. Как изменится давление перед насосом, если масло нагреется до температуры $t=80^{\circ}\text{C}$ ($v=1\cdot10^{-5}$ м²/с, $\rho=870$ кг/м³)?

Местные потери в трубопроводе принимать равными 10% потерь по длине.


- 2.18. Сравнить расходы воды ($v = 1 \cdot 10^{-6} \text{ м}^2/\text{c}$), турбинного масла ($v = 1 \cdot 10^{-4} \text{ м}^2/\text{c}$) и цилиндрового масла ($v = 10 \cdot 10^{-4} \text{ м}^2/\text{c}$) при температуре $t = 20^{\circ}\text{C}$ по стальному трубопроводу длиной 1, диаметром d (шероховатость $\Delta = 0,1$ мм) при одинаковом напоре H.
- 2.19. Определить силу F, которую нужно приложить к поршню насоса диаметром D, чтобы подавать в напорный бак жидкость с постоянным расходом Q.

Высота подъема жидкости в установке $H_0 = 10$ м, избыточное давление в напорном баке p_0 . Размеры трубопровода: длина l = 60 м, диаметр d, шероховатость $\Delta = 0,003$ мм, коэффициент сопротивления вентиля на трубопроводе $\xi = 5,5$.

Задачу решить для случаев подачи в бак бензина ($\rho = 765 \text{ кг/м}^3$, $v = 4 \cdot 10^{-7} \text{ m}^2/\text{c}$), машинного масла ($\rho = 930 \text{ кг/m}^3$, $v = 20 \cdot 10^{-6} \text{ m}^2/\text{c}$).

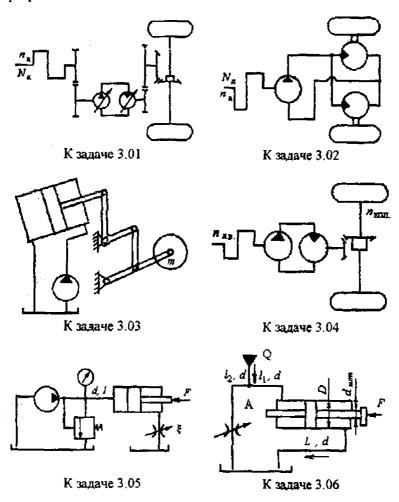
2.20. На поршень гидроцилиндра диаметром D действует сила F, вызывающая истечение масла из цилиндра через торцовое отверстие с острой кромкой, диаметр которого d. Определить силу, действующую на цилиндр.

Коэффициенты истечения для отверстия принять $\varphi = 0.97$, $\mu = 0.63$, плотность масла $\rho = 900$ кг/м³.

Исходные данные к задачам 2.01.1 - 2.20.5

Задача	Параметры		Вар	ианты за	дач	
Эадили	1 apamerph	1	2	3	4	5
<u> </u>	2	3	4	5	6	7
2.01	υ, м/с	2	3	4	5	7
	∆р,кПа	3	5	7	10	13
2.02	d, мм	20	30	50	70	110
	h, м	2	3	5	_ 7	10
2.03	d ₁ , mm	20	30	35	40	50
	d ₂ , мм	15	20	25	30	40
	рм, кПа	40	50	30	70	90
2.04	D , мм	50	70	100	150	200
	F, ĸH	20	50	90	120	150
	<u>d</u> , мм	6	5	7	9	12
2.05	Н, м	1	2	3	5	7
	ξ	10	8	5	4	3
2.06	D, мм	20	30	40	50	70
Ϊ	d, мм	10	15	20	25	30
	h, м	5	3	2	7	4,5
2.07	D, mm	40	50	60	90	120
	<u>d, мм</u>	3	4	5	7	9
2.08	D, mm	20	25	30	40	50
	d, mm	5	7	10	13	17
	Q, л/с	0,5	1	2	3	5
2,09	Q, л/с	15	25	45	60	100
ł.	d ₁ , мм	30	50	70	90	110
	d ₂ , мм	50	100	110	130	150
	ξ	5	3	7	6	8
2.10	Q, л/с	1	2	3	5	7
	d, мм	20	30	40	45	70
2.11	d, мм	3,5	4	5	6	10
	D, MM	5	8	8	10	15
	Q ₁ , cm ³ /c	6	8	10	15	50

1	2	3	4	5	6	7
2.12	D, мм	60	80	150	100	200
	d, мм	12	18	40	20	50
	F_i , κH	0,6	0,8	1	1,5	2
	F ₂ , kH	1	1,5	2	2	2 3
2.13	Q, л/с	0,1	0,15	0,25	0,5	I
}	D, мм	15	18	20	16	20
	d, мм	6	10	12	6	10
2.14	d, mm	6 3 2 6	4	6	8	10
	Q, cm ³ /c	2	5	7,3	15	25
	h, см		10	12	20	50
2.15	d, мм	20	30	40	50	100
	Н, м	5	8	10	3	7
	<u>h, м</u>	2,3	3,8	4,5	1,2	_ 3,3
2.16	d, мм	?	10	18	25	40
	l, м	2	?	1,0	3 ?	5
	p, MIla	0,2	0,1	0,5	?	0,3
•	h, м	1	1,5	?	0,5	0,8
	Q, л/с	2	1	0,5	1,5	?
2.17	Q, л/мин	8	20	60	75	100
	d, мм	12	20	30	32	40
	h, м	1	3	2	0,5	1,5
2.18	і , м	1	2	200	10	100
[d, mm	10	15	100	20	50
	Н, м	1	5	10	2	8
2.19	D, мм	10	20	65	100	150
	Q, л/с	0,1	0,5	2,5	3	5
	р₀, МПа	0,01	0,05	_0,15	0,03	0,1
2.20	D, мм	20	40	60	100	150
	F, kH	0,1	1	3	5	10
	d , мм	5	10	20	25	40


Раздел 3. ЗАДАЧИ ПО ГИДРОПРИВОДАМ

- 3.01. Для колесного трактора 4x2 общей массой m подобрать две одинаковые регулируемые гидромашины (насос и гидромотор). Развесовка трактора по осям: передний мост m/3, задний 2m/3. Передаточное число заднего моста i = 18,3, передаточные числа входного и выходного редукторов гидропередачи подобрать самостоятельно. Коэффициент сцепления шин с почвой $f_{cu} = 0.9$, динамический раднус качения задних ведущих колес г. Мощность двигателя N_{π} при частоте вращения его вала n_{π} .
- 3.02. Для колесного трактора 4x2 с тяговым усилием F подобрать насос и колесные гидромоторы. Развесовка трактора по осям: передний мост 1/3, задний 2/3 общего веса трактора. Коэффициенты сцепления шин с почвой $f_{eq}=0.9$, трения качения $f_{nep}=0.1$. Динамический радиус качения ведущих колес г. Мощность двигателя $N_{\rm d}$ при частоте вращения его вала $n_{\rm d}=2500$ об/мин.
- 3.03. Подобрать гидромашины системы навески сельхозмащин трактора. Масса навесной машины п, высота подъема Н, время полного подъема t. Передаточное отношение рычажного механизма навески выбрать самостоятельно. Гидравлические потери в каналах принять 30% от рабочего давления.
- 3.04. Рассчитать параметры регулируемых насоса и гидромотора объемного гидропривода автомобиля массой m, если время разгона t, средний КПД $\eta = 0.8$. Кинематические параметры автомобиля ($n_{\rm дв.}$, $n_{\rm кол.}$, $r_{\rm дни.кол.}$, $i_{\rm з.м.}$ и др.) принять самостоятельно.
- 3.05. Рассчитать параметры гидроцилиндра и насоса, если внешняя нагрузка на шток гидроцилиндра F, скорость его перемещения v, длина и диаметр трубопровода l = 2 м и d, коэффициент сопротивления дросселя $\xi = 20$.
- 3.06. Перемещение поршня гидроцилиндра диаметром D (диаметр штока $d_{\text{пот}}=30$ мм), нагруженного внешним усилием F, осуществляется подачей спирто-глицериновой смеси (вязкость $v=1\cdot 10^{-4}$ м²/с, плотность $\rho=1200$ кг/м³) насосом в рабочую полость гидроцилиндра. Для регулирования скорости перемещения поршня при постоянной подаче насоса служит дроссель на сливной трубе, присоединенной к узлу A системы.

Какова скорость перемещения поршня, если подача насоса Q, приведенные длины труб $l_1 = 5$ м, $l_2 = 10$ м, диаметр трубы d?

Какова максимальная скорость перемещения поршня при той же подаче насоса?

При какой наименьшей приведенной длине сбросной трубы, отвечающей наибольшему открытию дросселя, перемещение поршня прекратится?

- 3.07. Определить мощность шестеренного насоса, используемого в объемной гидропередаче для перемещения поршия гидроцилиндра, если внешняя нагрузка поршия при рабочем ходе F, скорость рабочего хода v, диаметры поршия D, штока $d_{urt}=30$ мм. Рабочая жидкость в системе спирто-глицериновая смесь плотностью $\rho=1235~{\rm kr/m}^3$, вязкостью $v=1,2\cdot 10^{-4}~{\rm m}^2/c$. Общая длина трубопровода системы $l=11~{\rm m}$, диаметр d.
- 3.08. Шестеренный насос подает масло (вязкость $v = 1 \cdot 10^{-5} \text{ м}^2/\text{с}$, плотность $\rho = 900 \text{ кг/м}^3$) в гидроцилиндр (диаметры поршня D, штока $d_{\text{int}} = 50 \text{ мм}$), нагруженный внешним усилием F, при этом часть подачи насоса возвращается в приемный бак по сливной трубе l_2 , минуя гидроцилиндр.
- 1. Определить скорость перемещения поршня гидроцилиндра υ_{Π} и давление насоса υ_{H} , если его подача Q, диаметры всех труб d, а их приведенные длины $l_{1} = 10$ м, $l_{2} = 70$ м, $l_{3} = 5$ м и $l_{4} = 10$ м.
 - 2. Как изменяется υ_n и p_n если сбросная труба будет выключена?
- 3. При какой наименьшей приведенной длине сбросной трубы l_{2min} , отвечающей наибольшему открытию дросселя, перемещение поршня прекратится?
- 3.09. Объемный насос, подача которого $Q_{\rm H}$, питает рабочей жид-костью ($\rho=870~{\rm kr/m}^3$) два параллельных гидроцилиндра с одина-ковым диаметром D.

Для синхронизации работы гидроцилиндров использован делитель расхода, в котором две ветви потока проходят через дроссельные шайбы диаметром d_1 и цилиндрические золотниковые окна высотой S, перекрываемые плавающим поршеньком диаметром $d_2 = 30$ мм. При неодинаковых нагрузках гидроцилиндров поршенек смещается в сторону менее нагруженной ветви, изменяя сопротивления ветвей (за счет неодинаковых открытий золотниковых окон) и поддерживая равенство расходов, поступающих в гидроцилиндры.

Определить скорость υ_n установившегося движения поршней гидроцилиндров, давление $p_{\rm H}$ насоса на входе в делитель и смещение X поршенька из крайнего левого положения при нагрузках гидроцилиндров F_1 = 10 кH и F_2 = 20 кH.

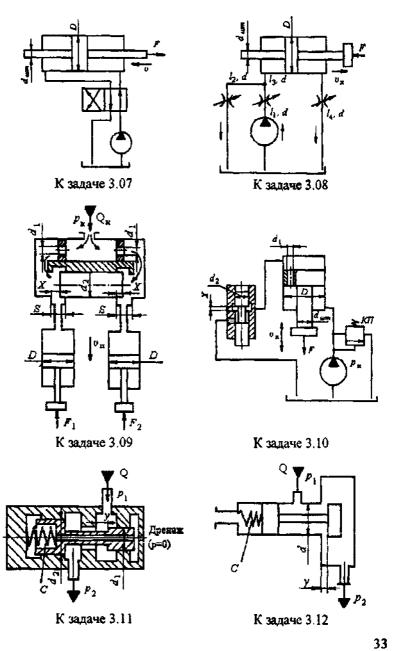
Коэффициент расхода дроссельных щайб принять $\mu_1 = 0,6$ и золотниковых окон $\mu_2 = 0,5$.

3.10. На исполнительный цилиндр гидроусилителя (диаметр поршня D, штока $d_{mr}=30$ мм) действует сила F. Рабочая жидкость ($\rho=850~{\rm kr/m}^3$) подается в нижнюю полость цилиндра насосом под давлением $p_{\rm H}=5~{\rm MHa}$.

Однокромочный золотник с диаметром плунжера $d_2 = 25$ мм управляет перемещениями штока цилиндра путем изменения открытия цилиндрического окна, через которое жидкость поступает из верхней полости цилиндра на слив.

В поршне цилиндра имеется дросселирующее отверстие диаметром d₁, благодаря которому можно при определенных открытиях золотника реверсировать движение поршня.

Построить график зависимости скорости υ_{Π} установившегося движения поршня от открытия X золотника. Указать, при каком открытии золотника $\upsilon_{\Pi}=0$. Какова будет υ_{Π} при закрытии распределителя?


Коэффициснт расхода отверстия и окна $\mu = 0.6$.

3.11. Для понижения давления на некотором участке гидросистемы применяют редукционный клапан, в котором требуемая разница давлений создается за счет потерь энергии в клапанной щели. В показанной на рисунке конструкции задано давление на входе p₁ = 20 МПа и давление на выходе p₂.

Пренебрсгая трением, определить диаметр клапана d_1 и его подъем у, если диаметр дифференциального поршня d_2 и расход жидкости через клапан Q. Жесткость пружины $c \approx 20$ Н/мм и ее натяг при $L_0 \approx 5$ мм у = 0. Коэффициент расхода клапана $\mu = 0,6$. Плотность жидкости $\rho = 900$ кг/м³.

3.12. Для понижения давления на некотором участке гидросистемы применен редукционный клапан, схема которого показана на рисунке. Пренебрегая трением, определить редуцированное давление p_2 при расходе через клапан Q, ссли давление на входе в клапан p_1 .

Вычислить подъем у клапана, приняв коэффициент расхода $\mu = 0,6$. Жесткость пружины клапана c = 235 H/мм, ход сжатия I, диаметр клапана d, плотность жидкости $\rho = 900$ кг/м³.

3.13. Объемный насос, характеристика которого приведена на рисунке, подает масло (плотность $\rho=865~{\rm кг/m}^3$, вязкость $\nu=0.7\cdot 10^{-4}~{\rm m}^2/{\rm c}$) по горизонтальной трубе длиной $l=20~{\rm m}$ и диаметром d в цилиндр с дифференциальным поршнем, диаметры которого D_1 и D_2 . Предохранительный клапан отрегулирован на давление 20 МПа.

Определить скорость поршня и развиваемое насосом давление в двух случаях: при нагрузке на поршень F и при F = 0

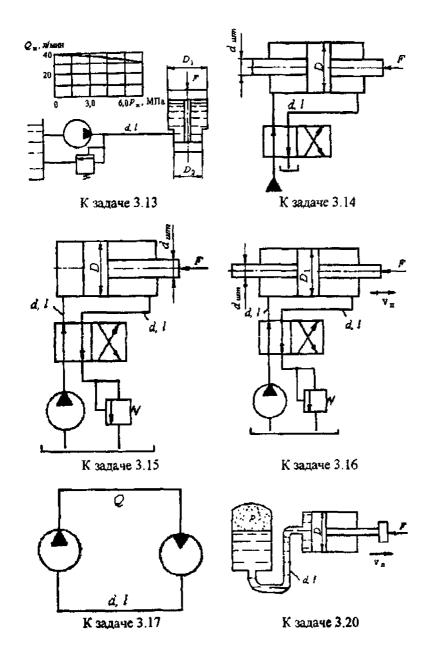
- 3.14. Определить полезную мощность насоса объемного гидропривода, если внешняя нагрузка на поршень гидроцилиндра F, скорость рабочего хода υ , диаметры поршня D, штока $d_{\text{шт}} = 30$ мм. Механический КПД гидроцилиндра $\eta_{\text{мех}} = 0.96$, объемный КПД гидроцилиндра $\eta_{\text{об}} = 0.97$. Общая длина трубопровода системы l = 5 м, диаметр трубопроводов d, суммарный коэффициент местных сопротивлений $\xi_{\text{c}} = 20$. Рабочая жидкость в системе спиртоглицериновая смесь ($\rho = 1210$ кг/м³, $\nu = 1.2 \cdot 10^{-4}$ м²/с).
- 3.15. Определить рабочее давление и подачу насоса объемного гидропривода, если усилие на штоке гидроцилиндра F, ход поршия L, число двойных ходов в минуту n, диаметры поршия D, штока $d_{\text{шт}}=30$ мм, механический КПД $\eta_{\text{M}}=0.95$, объемный КПД $\eta_{\text{O}0}=0.98$. Расчетные длины напорного и сливного трубопроводов 1=6 м, диаметр d=10 мм. Рабочая жидкость масло трансформаторное ($\rho=890$ кг/м³, $\nu=90\cdot 10^{-6}$ м²/с).
- 3.16. Построить график изменения скорости перемещения поршня гидроцилиндра в зависимости от угла α наклона шайбы регулируемого аксиально-поршневого насоса. Пределы изменения угла $\alpha=0...30^\circ$. Параметры гидроцилиндра: диаметры поршня D_1 , штока $d_{urr}=0.6\,D_1$. Параметры насоса Z=7, n=1200 об/мин, диаметр цилиндров d, диаметр окружности центров цилиндров d=2.7d.
- 3.17. В объемном гидроприводе насос соединен с гидромотором двумя трубами с эквивалентной длиной 1 и диаметром d. Определить мощность, теряемую в трубопроводе, и перепад давления на гидромоторе, если полезная мощность насоса N_n, а расход жидкости Q. Рабочая жидкость трансформаторное масло.

3.18. Пользуясь характеристикой гидромуфты, определить расчетный и максимальный моменты, передаваемые ею, а также передаточное отношение, КПД и скольжение S при этих режимах, если активный диаметр гидромуфты D_a, частота вращения ведомого вала п₁, рабочая жидкость - трансформаторное масло. Как изменятся передаваемые крутящий момент и мощность, если частоту вращения ведущего вала увеличить в полтора раза?

Характеристика гидромуфты

$I = n_2/n_1$	0	0,2	0,4	0,6	0,8	0,9	1,0
$\lambda_1 \cdot 10^{-7}$, мин 2 /м	60	56,5	51	43	32	24	0

3.19. Пользуясь характеристикой, приведенной в задаче 3.18, определить активный диаметр и построить внешнюю (моментную) карактеристику гидромуфты, предназначенной для работы с асинхронным электродвигателем, развивающим максимальный крутящий момент М_{дпах} при частоте вращения п_д. Рабочая жидкость - минеральное масло.


Указание. Активный диаметр D_a может быть определен по уравнению моментов совмещением режимов гидромуфты при i=0 и электродвигателя при $M_{\rm диаx}$.

3.20. В системе объемного гидропривода пневматический аккумулятор с избыточным давлением газа р питает маслом гидропилиндр диаметром D. Плотность масла $\rho=910~{\rm kr/m}^3$, вязкость $\nu=0.2\cdot 10^{-4}~{\rm m}^2/{\rm c}$. Соединительная латунная трубка (шероховатость $\Delta=0,001~{\rm mm}$) имеет размеры $I=12~{\rm m}$ и $d=15~{\rm mm}$.

Определить скорость υ_{tt} установившегося движения поршия гидроцилиндра, когда к нему приложена полезная нагрузка F.

Какой станет установившаяся скорость поршня при сбросе полезной нагрузки (F = 0)?

Местные сопротивления трубки принять равными 30% от сопротивления по длине.

Исходные данные к задачам

Задача	Параметры	Варианты задач				
Эадача		l	2	3	4	5
1	2	3	4	_ 5	6	7
3.01	m, Kr	500	800	1500	2000	3000
	Р, м	0,3	0,5	0,75	0,8	1
	N _д , кВт	15	30	60	80	100
	пд, об/мин	3000	2500	2200	2000	2000
3.02	F, ĸH	10	20	30	45	70
	Р , м	0,25	0,3	0,4	0,6	0,75
	Nд, кВт	10	15	20	30	60
3.03	m, кг	120	150	250	350	500
	Н, м	1,2	1,0	0,8	0,6	0,5
	t, c	3	4	5	6	7
3.04	m, Kr	900	1000	1200	1250	1500
<u> </u>	t, c	4	6	5	10	8
3,05	F, KH	18	3	10	15	25
	υ, м/c	0,05	0,25	0,2	0,1	0,08
<u> </u>	d, мм	6	8	10	12	10
3,06	D, мм	60	80	100	120	150
	F, ĸH	0,1	0,5	1,0	1,5	2
Í	Q, л/c	1	2	3	5	7,85
<u></u>	d, мм	10	20	30	40	50
3.07	F, ĸH	1	3	5	10	15
ļ	υ, м/с	0,2	1,0	0,15	0,1	0,05
Ì	D, мм	50	60	50	80	100
}	d, мм	8	8	10	12	10
3.08	D, мм	100	120	200	150	180
Í	d, мм	14	14	50	20	30
	F, kH	1	1	2	8	10
	Q, л/с	2	2	6	4	5_
3.09	Q _и , л/с	0,24	0,4	0,8	1	1,5
Ì	D, mm	50	60	80	100	120
	d 1, мм	2	2,1	2,4	2,8	3
	S, mm	0,8	0,9	1	1,2	1,5

1	2	3	4	5	6	7
3.10	D, mm	60	80	100	120	150
	F, ĸH	3,5	4	5	6	8
	d ₁ , мм	4	2	3	5	6
3.11	p ₂ , МПа	10	8	5	12	2
	d ₂ , мм	8	12	15	10	20
	Q, л/с	0,5	<u> </u>	6,3_	2	3
3.12	рі, МПа	6,3	10	16	20	30
	l, mm	1	2	1,5	2,2	2,8
8	d, мм	8	10	12	15	18
	Q, л/с	0,5	0,6	1	1,2	2
3,13	đ, mm	6	8	10	12	14
(\mathbf{D}_{1} , мм	60	80	150	200	250
	D ₂ , MM	50	60	120	180	220
	F, ĸH	2	5	12,7	15	20
3.14	F, ĸH	50	60	70	80	100
4	υ, см/с	4	9,5	12,5	8,6	5,6
]	D, mm	110	120	130	140	150
	d, мм	15	20	25_	22	20
3,15	F, ĸH	60	70	80	90	100
1	L, mm	150	120	220	100	112
l	n, 1/мин	10,6	-20	10	10	15
	D, MM	120	130	138	145	155
3.16	D_1 , MM	95	135	175	225	275
	<u>d, мм</u>	20	25	30	35	40
3.17	N _n , κΒτ	5	6	7,5	10	12
	Q, л/с	0,5	0,62	0,75	0,98	1,24
	l, м	36	40	44	50	56
L	d, мм	18	20	22	25	28
3.18	Da, MM	440	420	500	450	440
	n ₁ , об/мин	1500	2000	1500	1200	2200
3.19	$M_{\text{дивах}}$, $H \cdot M$	300	350	250	400	300
	пд, об/мин	2200	1100	1100	2200	1100
3.20	р, МПа	5	6	7	10	12
1	D, мм	60	80	90	100	150
	F, ĸH	12	15	_20	30	50

Раздел 4. ЗАДАЧИ ПО ПНЕВМАТИКЕ

- 4.01. Рассчитать давление в междроссельной камере усилителя типа «сопло-заслонка» с точностью не менее 5% методом последовательных приближений с учетом изменения коэффициента расхода при следующих условиях: диаметр постоянного дросселя (жиклера) $d_{\rm e}$; диаметр переменного дросселя (сопла) $d_{\rm e}$; давление питания абсолютное $p_{\rm o}$; давление атмосферное $p_{\rm a}=0,1$ МПа; температура воздуха T=293 К; расстояние «сопло заслонка» h=0,03 мм; коэффициент расхода жиклера $\mu_{\rm w}=0,8$ [4, с. 43, 71...76].
- 4.02. Рассчитать распределитель золотникового типа для управления пневмоцилиндром при следующих условиях работы: диаметр поршня цилиндра D; суммарная нагрузка на поршень N; максимальная скорость движения поршня υ ; температура воздуха $T=20^{\circ}\text{C}$; давление перед распределителем $p_0=0.6$ МПа; атмосферное давление $p_a=0.1$ МПа.

Определить массовый расход воздуха в пневмоцилиндр G. Влиянием соединительных трубопроводов пренебречь. Коэффициент расхода дросселирующих окон принять $\mu = 0.8 [4, c. 59...63, 319]$

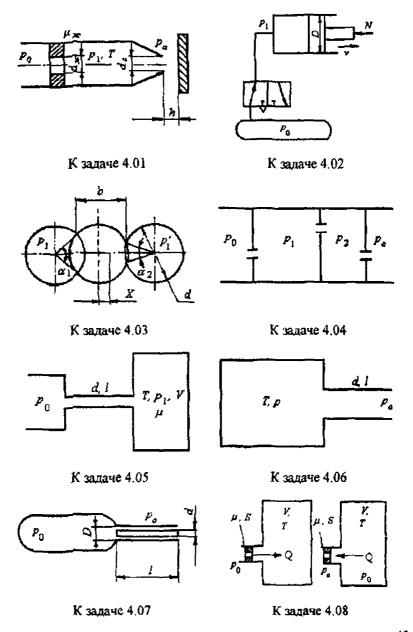
4.03. Построить статическую характеристику струйной трубки (зависимости давлений p_1 и p_1' , а также p_1 - p_1' от смещения трубки относительно центра между приемными отверстиями X) при заданных параметрах: диаметр отверстий сопла и приемной пластины d; абсолютное давление перед трубкой p_0 , атмосферное давление $p_a = 1 \cdot 10^5$ Па; расстояние между кромками отверстий приемной пластины $b \approx 0.2$ мм [4, c. 64...69, 72].

Утечками газа через уплотнения поршия пренебречь.

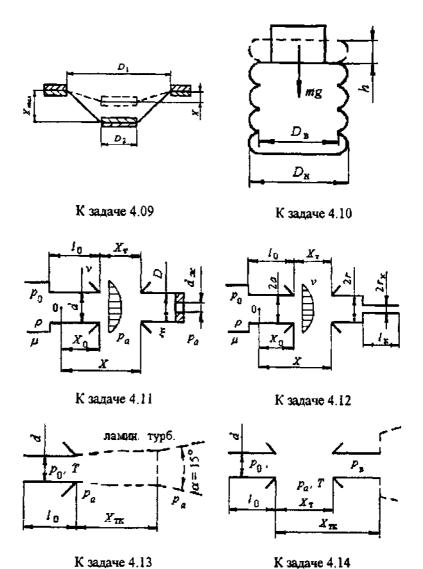
- 4.04. Дан пневматический дроссель, состоящий из трех одинаковых последовательно установленных шайб с отверстиями. Шайбы установлены на некотором расстоянии друг от друга. Определить давления между шайбами при следующих условиях: абсолютное давление питания p_0 ; атмосферное давление $p_0 = 1 \cdot 10^5$ Па [4, c. 81...84].
- 4.05. Построить график нарастания давления в глухой камере, соединенной с источником давления через капилляр, при следующих условиях: начальное давление в камере $p_a = 1 \cdot 10^5$ Па; давление источника p_o ; динамический коэффициент вязкости воздуха

 $\mu = 1.8 \cdot 10^{-6}$ Па · с; температура воздуха $T = 20^{\circ}$ С; объем камеры V; длина капилляра I = 10 мм; диаметр капилляра d; универсальная газовая постоянная R = 287 Дж/кг · К.

График построить до давления в камере $p_1 \approx 0.95 \cdot p_o$. Определить постоянную времени τ_{Π} графически и аналитически [4, с. 100...103].

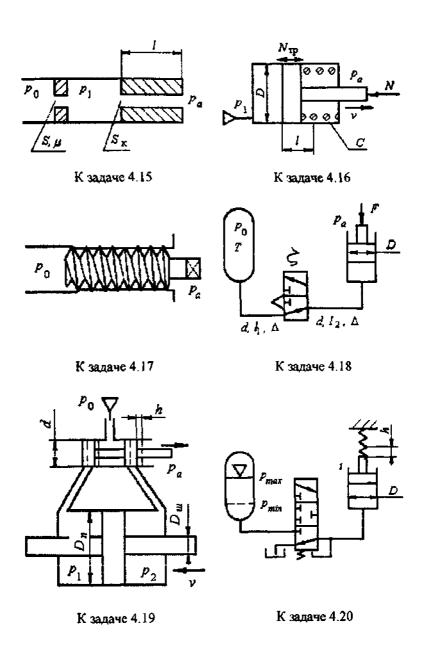

- 4.06. Построить графики зависимости массового расхода воздуха от давления на входе в капилляр при истечении в атмосферу при следующих условиях: минимальное давление на входе в капилляр p_{min} ; максимальное давление на входе в капилляр p_{max} ; температура воздуха $T_1 = -30^{\circ}\text{C}$; $T_2 = 0^{\circ}\text{C}$; $T_3 = 30^{\circ}\text{C}$; длина капилляра $t_3 = t_4$ мм; диаметр капилляра $t_4 = t_4$ мм;
- 4.07. Рассчитать параметры кольцевого дросселя «цилиндрцилиндр» при выходе воздуха из ресивера в атмосферу при следующих условиях: массовый расход G; давление в ресивере p_0 ; температура воздуха $T=293~\mathrm{K}$; отношение «длина/диаметр» щели n=10; ширина щели a.

Определить массовый расход воздуха и воды через дроссель при прочих равных условиях [4, ¢. 41].


- 4.08. Определить время переходного процесса для наполнения и опорожнения пневматической камеры через дроссель при следующих условиях: емкость камеры V; площадь жиклера S; коэффициент расхода жиклера $\mu = 0,6$; температура воздуха T; давление питания p_0 ; атмосферное давление $p_0 = 0,1$ МПа; показатель адиабаты K = 1,4 [5, c. 231].
- 4.09. Построить характеристику развиваемого плоской мембраной усилия в зависимости от хода при следующих условиях: давление воздуха p_0 ; диаметр мембраны D_1 ; диаметр жесткого центра $D_2 = 30$ мм; максимальный прогиб мембраны X_{max} .

Влиянием физических свойств мембраны пренебречь [4, с. 52].

4.10. Рассчитать ход сварного стального сильфона, поднимающего груз, при следующих условиях: наружный диаметр гофров $D_{\rm B}$; внутренний диаметр гофров $D_{\rm B}=30$ мм; масса груза m; давление в сильфоне p; число гофров n=5; толицина стенок $\sigma=0.2$ мм; модуль упругости материала стенок $E=2\cdot 10^{11}$ Па; коэффициент Пуассона материала $\mu_{\rm H}=0.26$ [4, с. 56...59].



- 4.11. Определить давление в приемной трубке элемента «трубка-трубка» с ламинарным питающим каналом и нагрузкой в виде жиклера при следующих условиях: длина ламинарного канала $l_0 = 30$ мм; диаметр питающей трубы d = 1 мм; диаметр приемной трубы D = 1 мм; расстояние между срезами трубок X_τ ; диаметр жиклера $d_{xx} = 0.3$ мм; давление питания p_0 ; плотность воздуха $p_0 = 1.2$ кг · м⁻³; коэффициент сопротивления жиклера ξ ; динамический коэффициент вязкости воздуха $\mu = 1.8 \cdot 10^{-6}$ Па · с [4, с. 145...151].
- 4.12. Определить давление в приемной трубке элемента «трубкатрубка» с ламинарным питающим каналом и нагрузкой в виде капилляра при следующих условиях: длина ламинарного канала $l_0 = 30$ мм; диаметр питающей трубы 2a = 0.7 мм; диаметр приемной трубы 2r; диаметр капилляра $2r_{\rm K}$; длина капилляра $l_{\rm K}$; расстояние между срезами трубок $X_{\rm T} = 8$ мм; избыточное давление питания $p_{\rm O}$; плотность воздуха $\rho = 1.16$ кг/м³; динамический коэффициент вязкости воздуха $\mu = 1.8 \cdot 10^{-6}$ Па · с $\{4, c. 145...151\}$.
- 4.13. Определить расстояние от торца питающего капилляра до места турбулизации струи при истечении воздуха в атмосферу при следующих условиях: диаметр капилляра d; длина капилляра l_0 ; абсолютное давление питания p_0 ; температура воздуха T=293 K; атмосферное давление $p_0=1\cdot 10^5$ Па [4, c. 151...156].
- 4.14. Определить давление питания элемента «трубка-трубка», соответствующее максимуму выходного давления при следующих условиях: диаметр питающего капилляра d; длина питающего капилляра l_o ; расстояние между трубками X_τ ; коэффициент запаса по положению турбулентного конуса $n = X_\tau/X_{\tau K} = 1,5$; температура воздуха T = 293 K; атмосферное давление $p_a = 1 \cdot 10^5$ Па [4, с. 151...157].
- 4.15. Построить характеристику пневматического датчика температуры, состоящего из последовательно включенных турбулентного и ламинарного дросселей, при следующих условиях: площадь жиклера S; площадь капилляра S_{κ} ; длина капилляра I; коэффициент расхода жиклера $\mu = 0.8$; давление питания $p_0 = 0.14$ МПа; диапазон температур T_{min} , $T_{max} = 303$ K [4, c. 276...281].

- 4.16. Построить диаграмму P = f(x) для движения поршня в обе стороны в пневмоприводе одностороннего действия при следующих условиях: диаметр поршня D; ход поршня I; начальное сжатие пружины $X_0 = 40$ мм при нахождении поршня в крайнем левом положении; сила, приложенная к штоку, N = 1кH; постоянная сила трения $N_{TD} = 0.2$ кH; жесткость пружины C = [4, c. 295...299].
- 4.17. Рассчитать параметры винтового пневматического дросселя, обеспечивающего истечение воздуха с дозвуковой скоростью при следующих условиях: давление питания p_o ; атмосферное давление $p_a = 1 \cdot 10^5$ Па; температура воздуха $T_o = 293$. К; вид резьбы прямоугольная; массовый расход воздуха G [6, с. 107, 108].
- 4.18. Определить скорость установившегося движения одностороннего пневмопривода при следующих условиях: давление в ресивере p_0 ; суммарная сила, приложенная к поршню F; внутренний диаметр труб d=10 мм; длина труб: ресивер-распределитель $l_1=5$ м; распределитель-цилиндр $l_2=3$ м; эквивалентная шероховатость труб $\Delta=0.01$ мм; диаметр поршня цилиндра D; коэффициент сопротивления распределителя ϵ , температура воздуха T=293 K; атмосферное давление $p_0=1\cdot 10^5$ Па [6, c. 134...144].
- 4.19. Определить скорость движения двухстороннего пневмопривода, управляемого золотником с одинаковыми дросселирующими отверстиями при следующих условиях: давление питания p_0 ; атмосферное давление $p_a=1\cdot 10^5$ Па; температура воздуха $T=293~{\rm K}$; диаметры поршня и штоков пневмоцилиндра D_n , $D_m=20~{\rm mm}$; диаметр золотника пневмораспределителя d; ширина дросселирующей щели распределителя $h=2~{\rm mm}$; коэффициент расхода кромок распределителя $\mu=0,8$, нагрузка и трение отсутствуют [4, с. 314...316].
- 4.20. Определить объем и давление зарядки азотом мембранного пневмогидроаккумулятора тормозной системы, если вытесняемой под рабочим давлением жидкости должно быть достаточно для n = 9 торможений.

Расчет выполнить для изотермического и изоэнтропийного процессов расширения газа при следующих условиях: максимальное рабочее давлени p_{min} ; диаметр колесного тормозного цилиндра D; число поршней в цилиндрах i=8; ход поршня при торможении h=5 мм.

Исходные данные к задачам 4.01.1 - 4.20.5

2	Параметры		Варианты задач				
Задача		1	2	3	4	5	
1	2	3	4	5	6	7	
4.01	d _ж , мм	0,2	0,25	0,4	0,3	0,5	
	d _e , мм	1,0	1,5	2,5	2,0	3,0	
	ро, МПа	0,4	0,3	0,2	0,35	0,15	
4.02	D, mm	20	30	50	70	100	
	N, kH	0,1	0,3	0,7	1,5	3	
	υ, MM/c	10	12	15	25	35	
4.03	d, mm	1,5	2	2,2	2,5	1,8	
<u></u>	р _о , МПа	0,7	0,5	0,6	0,4	0,5	
4.04	ро, МПа	0,2	0,3	0,5	0,7	0,9	
4.05	р₀, МПа	0,2	0,25	0,15	0,3	0,4	
	V ₀ , дм ³	0,1	0,2	0,5	ì	2	
	<u>d, мм</u>	0,3	0,35	0,4	0,2	0,5	
4.06	р _{тіп} , МПа	0,01	0,03	0,05	0,1	0,2	
	р _{тах} , МПа	0,1	0,1	0,2	0,3	0,5	
	d, мм	0,3	0,35	0,5	0,4	0,8	
4.07	G, kr/c	0,001	0,0001	0,002	0,01	0,02	
	р₀, МПа	0,1	0,3	0,5	0,7	0,6	
Ĺ	а, мм	0,5	0,2	0,4	1	2	
4.08	ν, л	0,5	1	2	3	5	
	S, mm ²	1	5	30	10	20	
<u> </u>	р₀, МПа	0,14	0,05	0,3	0,1	0,6	
4.09	ро, МПа	0,01	0,015	0,04	0,02	0, i	
	\mathbf{D}_1 , mm	5 0	60	70	65	75	
	X_{max} , mm	2	3	5	4	6	
4.10	D _H , MM	60	50	40	45	55	
	m, kr	1	0,5	4	10	15	
	р, МПа	0,01	0,01	0,05	0,2	0,1	
4.11	Хт, мм	5	6	8	10	12	
)	р _о , кПа	2	1,5	1	2,8	6	
	ξ	1	1,5	0,5	0,6	2	

1	2	3	4	5	6	7
4.12	2г, мм	0,3	0,4	0,52	0,6	0,5
l i	l _k , mm	8	12	16	20	30
	ро, кПа	10	5	1,5	ı	2,5
4.13	d, мм	0,2	0,25	0,32	0,35	0,4
	l _o , мм	20	30	60	80	50
	р₀, МПа	0,5	0,3	0,2	0,15	0,4
4.14	d, мм	0,3	0,4	0,5	0,6	1
[l _o , мм	10	20	75	50	100
Ĺ	X_{T_2} MM	6	8	10	20	50
4.15	S, MM ² _	1	0,8	0,6	0,7	1,2
	S_{κ} , mm ²	0,5	0,4	0,6	0,3	0,6
	l, mm	100	50	60	10	30
	T _{min} , K	273	280	290	293	300
4.16	D, мм	80	100	120	150	200
!	I, MM	50	60	100	120	150
	C, H/mm	5	7	10	12	15
4.17	ро, МПа	0,4	0,5	0,6	0,7	1
	G, kr/c	3 · 10-4	4 · 10-4	6 - 10-4	8 - 10-4	10 - 10-4
4.18	ро, МПа	0,2	0,3	0,5	0,6	1
	F, ĸH	0,1	0,5	0,8	ĺ	2
ł i	D, mm	40	50	60	60	80
	Š д	25	20	15	10	5
4.19	ро, МПа	0,12	0,15	0,18	0,2	0,25
f l	D_n , мм	40	50	60	80	100
	d , мм	10	12	15	18	20
4.20	р _{тах} , МПа	20	18	15	12	10
ļļ	р _{тіп} , МПа	12	10	8	7	5
	D, мм	40	25	30	35	20

Лнтература

- 1. Гидравлика, гидромашины и гидроприводы: Учебник для машиностроительных вузов / Т.М.Башта и др. - М.: Машиностроение, 1982.
- 2. Чупраков Ю.И. Гидропривод и средства гидроавтоматики. М.: Машиностроение, 1979.
- 3. Сборник задач по машиностроительной гидравлике: Учебное пособие для машиностроительных вузов / Д.А.Бутаев и др. М.: Машиностроение, 1981.
- 4. Дмитриев В.Н., Градецкий В.Г. Основы пневмоавтоматики. М.: Машиностроение, 1973.
- 5. Метлюк Н.Ф., Автушко В.П. Динамика пневматических и гидравлических приводов автомобилей. М.: Машиностроение, 1980.
- 6. Погорелов В.И. Гидродинамические расчеты пневматических приводов. Л.: Машиностроение, 1971.

Содержание

1.	общие положения	3
2.	АММАЧТОЧП КАРОЗАЧ КАЦІЗО	3
	2.1. Вводные сведения, основные физические	
	свойства жидкостей и газов	3
	2.2. Основы кинематики	3
	2.3. Общие законы и уравнения статики и	
	динамики жидкостей и газов	4
	2.4. Одномерные потоки жидкостей и газов	4
3.	СПЕЦИАЛЬНЫЕ РАЗДЕЛЫ ДИСЦИПЛИНЫ	5
	3.1. Гидравлические машины	5
	3.2. Лопастные насосы	5
	3.3. Гидродинамические передачи	5
	3.4. Объемные насосы	6
	3.5. Объемный гидропривод и средства	
	гидроавтоматики	6
	3.6. Пневмопривод и средства пневмоавтоматики	7
4.	RINHAROGATT ANJIAO	7
	Раздел 1. ЗАДАЧИ ПО ГИДРОСТАТИКЕ	10
	Раздел 2. ЗАДАЧИ ПО ГИДРОДИНАМИКЕ	19
	Раздел 3. ЗАДАЧИ ПО ГИДРОПРИВОДАМ	29
	Раздел 4. ЗАДАЧИ ПО ПНЕВМАТИКЕ	39
	Литература	48
	A A	

Учебное излиние

ПРОГРАММА И МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к контрольным работам по гидравлике, пневматике, гидропневмоприводам и гидропневмоавтоматике для студентов заочной формы обучения автотракторного факультета

Составители: БОГДАН Николай Владимирович КОРОЛЬКЕВИЧ Александр Викторович КОРОЛЬКЕВИЧ Виктор Александрович

Редактор И.Ф.Антаневич, Корректор М.П.Антонова Подписано в печать 29.09.2000.

Формат 60х84 1/16. Бумага тип. № 2. Офсст. печать. Усл. печ.л. 3,0. Уч.-изд.л. 2,3. Тираж 200. Заказ 1.

Издатель и полиграфическое исполнение: Белорусская государственная политехническая академия. Лицензия ЛВ № 155 от 30.01.98. 220027, Минск, пр.Ф.Скорины, 65.