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Abstract— We present methods for finding discrete spectra and derive analytic expressions 
for the eigenfunctions of scalar characteristic equations of the theory of radiation transport. 
We obtain new two-term recursion formulas and analytic representations for solutions of infinite 
tridiagonal systems of linear algebraic equations. We obtain analytic forms of the resolvents of 
scalar characteristic equations for phase functions square integrable on the closed interval [—1,1]. 
In addition, we derive a general analytic expression for the Green function of a two-dimensional 
(with respect to the angular variables) integro-differential equation of the radiation transport for 
the case in which the phase functions satisfy the Holder condition on the closed interval [—1,1].
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The present paper continues the paper [1] and the corresponding numbering of sections, formulas, 
theorems, corollaries, and remarks.

6. ALGORITHMS FOR FINDING DISGRETE SPEGTRA, 
EIGENFUNGTIONS, AND NORMALIZING GONSTANTS 

FOR REDUGED SGALAR GHARAGTERISTIG EQUATIONS OF THE TRT
The following assertion can be proved with the use of systems (4), (8), and (9), Theorems 3-6, 

Gorollary I, Remark 3, and constructions used in [2, 3] in the analysis and statement of properties 
of infinite continued fractions.

Theorem  7. Let the assumptions of Theorem 1 be true. Then the functions and
Po(— l ^h ‘̂ o), where (|m|,Wo) £ Q, can have zeros with respect to the variable (  only on the 
interval (—1 ,1); moreover, these zeros can be only first-order zeros.

The problem of constructing well-posed efficient algorithms for separating and finding roots of 
any of the equations

Poi-C]\m\]Uo) = 0, P2(-C^;0;l) =  0
[see Eqs. (6), (7), and (12)] is not necessarily simple if p(/r) G L2(—1,1), because the functions 
Po(— l ^ h a n d  p2(—C^;0;1) are not polynomials. For the case in which (|m|;wo) £ Q, such 
an algorithm was suggested and justified in [4] and was developed in [3]. It was suggested in these 
papers to find the roots of the above-mentioned equations on the interval (—1,1) with the use of 
the infinite system of Sturm polynomials

{ . . . ,  Dn,+ii-i(] |m|; Wo),. . . ,  А ( - г ( ;  jmj; Wq), 5 о ( -г ( ;  |m|; Wq)},
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662 ROGOVTSOV

where Пі G N. For arbitrary |m| G No, all terms of this system were defined by the recursion 
formula

A +i(-*C ; HI;wo)
=  +  f)^^x/(|m|; W o)5£(-i(; |m|; Wq) -  +  2|m|)/(  ̂+  f ) )5 £ _ i( - i ( ;  |m|; Wq), G N,

D o{-i(; \m\;uio) =  1, A ( - * C ;\m\;uio) =  -(2|m| +  f ) ( f  -uiof\m\)-

For separating and finding the roots of the equation p2{—C ;̂0; f) =  0 on the interval (—f, f), 
one can also use the infinite system of Sturm polynomials, which, however, should be constructed 
with regard of the relation f) =  0. Consider the sequence of polynomials

0; f ) , . . .  , A ( - < ;  0; f), F>o(-<; 0; f )} , щ G N,

where
Doi-i(-,o-,i) = i, A (-*C ;0 ;1 ) =  -^<2"(0;i) =  - 5 (i - /2 ) .

The polynomials 0; f) are defined by the relations

Dn,+i{-i(] 0; f) =  ((ni +  f)!)^^T>„,+i(-iC; 0; f),

where, for any rii G N, 0; f) is the determinant of the basic matrix of a finite system,
which contains Пі + 1 equations and is obtained from subsystem (9) by its truncation and the 
replacement of the parameter z/q by the quantity That truncation can be reduced to the re­
placement of all quantities 6]̂ (г/о; 0; f;Oo)|j>„i+3 in subsystem (9) by zeros. It follows from the
definition of the polynomials 0; І)І£еМо that they are related to each other by the recursion
formula

^ni+ i(-*C ;0;i) =  -
2,Tli “h 5

(i- /n ,+ 2 )i^ n ,H C ;0 ;i)  -
(пі +

Щ + 1 Пі(Пі +  І)

where Во{—г(]0] f) =  f and 0; I) =  —5(1 — / 2).

C ^ ^ n i-i(-< ;0 ;I ) (пі G

Theorem  8. Let the assumptions of Theorem 1 be satisfied, and let m = 0 and Wq =  f. Then 
the following assertions hold.

1. For each t? G N, the polynomial Dc^i{—i(;0; I) can have only first-order zeros on the inter­
val (—1,1); moreover, they are necessarily symmetric around the point C =  0.

2. lim^^+oo Dfi—ifi, 0; I) =  0 if the number (  is a zero of the function 0; I) on (—1,1).
3. The set of all zeros of the polynomial Dn^^i{—i(; 0; I) with any Пі G N on the interval (—1,1) 

coincides with the set of all zeros of the finite continued fraction

P2;m(-C ;0 ;f)  = (-<?2(0;I))C^ i-Qm + li0]l))C
1 '  '  1 

which can have only first-order zeros on (—1,1); moreover,

p 2 (-C ^ ;0 ;l)=  lim P2;m(-C^;0;l) for arbitrary C g ( - I , I ) .
n i —>- +  oo

4. The finite subsystem

0; I), (-ІС; 0; I ) , . . .  , Do{-iC, 0; I)},

where Пі G N, of the infinite system of Sturm polynomials is a system of Sturm polynomials for the 
equation 0; f) =  0 with respect to the variable (  G (0 ,1); moreover, the number of zeros
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of the polynomial iQ 0; 1) on the interval (/З /̂Зг) [A < /З2; /Зь/Зг e (0,1)] is equal to the
number of sign alternations in the finite subsystem of Sturm polynomials corresponding to Пі when 
passing from fii to /З2 •

5. If (  is a zero of the function p2(—C ;̂0; 1) on the interval (—1,1), then there exists a finite 
number щ E No such that the inequality

holds for any finite number Пі >По-

It was shown in [3, 4] that if (jmj; Wo) G Q, then the use of an infinite system of Sturm polynomials 
does not lead to the loss of a zero or to the appearance of false ones. The same result holds if 
m =  0 and W£= 1. The validity of this assertion can be proved with the use of properties of the 
polynomials Ds{—i(; |m|;wo) [3, 4] and continued fractions [5-7], Theorems 2, 3, and 6, the Perron 
and van Vleck theorems, the theorem on the existence of the limit of a monotone decreasing lower- 
bounded numerical sequence, and the method of contradiction.

Theorem  9. Suppose that the assumptions of Theorem 8 are satisfied and there exists at least 
one zero of the function 0; 1) on the interval (0,1). Then the elements of all sequences of
approximate values of zeros of the function p2(—C^;0;1) lhat correspond to the index! G N [t? is the 
index of zero in the sequence of zeros of that function on (0,1); moreover, they are arranged in 
the increasing order] and are zeros of the polynomial і4„^+і(—fQ 0; 1) on the interval (0,1) for 
various values of Пі =  1 ,2 ,3 ,... are monotone decreasing with increasing Пі and tend to the 
corresponding exact values of zeros of the function p2(—C^;0;1) ^  + 00. In addition, on
any interval (0,/3), where (I G (0,1), for sufficiently large Пі, the use of a finite subsystem of 
Sturm polynomials does not lead to the loss of zero or to the appearance of false zeros for finding 
approximate values of zeros of the function 0; 1).

Suppose that, for some pair (]m], Wo) G No x (0,1], !R(]m];wo) is a nonempty set and v = —i(  G 
!R(]m];wo), where (  G (—1,1). Then i(  G !R(]m];wo). If pairs differ at least by one of values 
of the quantities ]m] and uio, then their corresponding discrete spectra of scalar reduced char­
acteristic equations do not necessarily coincide. Therefore, below elements of the set !R(]m];wo) 
are denoted by (  =  ±i({\m\;uio), where ()(]m];wo) G [0,1), and by T|m|(±f()([m[;Wo) ;r ;Wo) we 
denote the eigenfunctions corresponding to the elements {±i({\m\;uio))- Since nontrivial solu­
tions T|m|(±f()([m[; Wo);r ; Wo) and {6) (̂±f()([m[; Wo); [m[; Wo; 0|m|)} of the corresponding homoge­
neous analogs in the families of the IE (3) and SLAE (4) in the classes L2(—1,1) and 1?2;К2(|т|) are 
defined to within an arbitrary nonzero factor, we introduce the coordinated normalizations

bf{±i({\m\-,Wo)-,\m\-,Wo-,0\m\) =  [(2 [m[)!] /̂ ,̂
L
(1 -/r^ )l“ l/^T|„|(±fC([m[;wo);R;wo)d/r =  2l“ l([m[)![(2[m[

(18)

1-1

Theorem  10. Let the assumptions of Theorem 1 be satisfied, and let !R([m[;wo) f  0 . Then 
the eigenfunctions T|m|(±f()([m[;Wo);r ;Wo) of the corresponding homogeneous analog of the IE 
in the family of IE (3) under the normalization condition (18) belong to the class C[—1,1] and 
can be represented in the analytic form

T|„l(±f((]m];wo);R;wo)
+  00

=  [2((2]"г1)0^^^]^^Х!(^(® +  +  l)^C(±*C(l?«l;wo);]m];wo)P
s = 0

=  Wo[2((2]m])!)^/^(l ±  C(]m]; Wo)r )]^^
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664 ROGOVTSOV

X  J^(2(x +  \m\) +  1)/,+|„|Ф,^(±гС(|т|;шо); |m|;wo)PS +  |m| ,\m (r ),

(|m|;wo) G Q,

Фо(±*С(0; 1); r ; i)lc(o;i)Go =  о

(19)

1 -   ̂^ ( 2s + 5)Ф̂ (±гС(0; 1); 0; l)P.+2 (r)
s = 0

= [2(i±C(0; i)r)]-'

Фо(0;/і ;1) = 2 -1 .

1 -  ^ ^ ( 2 s  +  5)Л+2Ф^(±іС(0; 1); O; 1)P.+2(r ) (20)

In addition, the series in (19) and (20) are convergent pointwise and uniformly on the interval 
[—1,1], and the quantities 4>f{u;\m\;uio) and Ф(^(г/;0;1) are defined by the relations

Фо (г/; |m|;wo)||™|eNo =  1, |m|; Wq)U n, |m|eNo
S

=  |m|;wo))^i.
£=1

Фо(г^;0;1) =  1, Ф^(г/;0;1)им =  {іпУ \\{£ + 2){xf_^fi0;l)pe+2{n‘̂ ;0; l )y

(21)

(22)
е = 1

For the derivation of asymptotic solutions of BVP for a scalar RTF with the use of the Case 
method [8] or the GIRRM [9, 10], one needs the normalization constants

c(±i((]m ]; Wo); ]m]; Wo) =
1 -| -1 

/  /г(Ф|„|(±гС(]т];(ио);/г;шо))^ d/r

Closed-form analytic expressions for these constants were obtained in [2, 3] for the case in which 
(]m],Wo) G Q. By using formulas (19) and (20) and the orthogonality of the systems of associated 
Legendre functions, we show that the following relations hold under the assumptions of Theorem 10:

(c(±i((]m];wo); ]m];wo))^i] (|m|,Wo)£Q 
+ 00

=  =F(2C(kl;w o)(2]m ])!)-i^(2(s +  \m\) +  1)(1 -  u)ofs+\m\)i f̂ і±і(і\т\-,Шо)]\т\-,Шо)Т,
s=0

+ 00

(c(±iC(0; 1); 0; l))-']c(o,i)go =  T(8C(0,1))-1 ^ ( 2 s  +  5)(1 -  Л+2)(Ф^(±г((0,1); 0; 1))^,
s = 0

where Ф(̂ (г̂ ; ]m];wo) and Ф( (̂г/;0; 1) should be found with the use of formulas (21) and (22).

7. ANALYTIC REPRESENTATIONS AND RECURSION FORMULAS 
FOR SOLUTIONS OF INFINITE SLAB

Finite SLAB obtained with the use of the truncation from the infinite SLAB (4), (8)-(9), and 
(14) do not necessarily satisfy, for г/ G T, sufficient conditions of the well-posedness and stabil­
ity [11, p. 78], whose validity would provide the efficiency of the right Thomas method [11, p. 74]. 
An analytic method for solving inhomogeneous SLAB related bijectively with system (4) was sug­
gested in [2] for the case in which (]m],Wo) G Q. This method was developed in [3], where its 
well-posedness and efficiency were proved for finding solutions of such infinite systems. In partic­
ular, it was shown in [3] that the solutions of these systems and the values of infinite continued 
fractions are stable under sufficiently small changes in the norms of phase functions in the classes
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L2(—1,1) and C[—1,1]. Note that, for applications of the TRT, it is especially interesting to develop 
analytic methods for solving infinite SLAE of the type (4), which would permit one to construct 
convenient numerical real-time algorithms for “practically arbitrary” phase functions. The use of 
general ideas and constructions of the GIRRM [9, 10] and the method suggested in [2, 3] permits 
one to develop a new well-posed effective analytic method for infinite SLAE of the type (4) and (14).

Theorem  11. Let the assumptions of Theorem 6 be true, let v{u) G and let
b{v,v{v)) =  ■a(*̂ ))}s£No be the unique solution of system (14) in Then the fol­
lowing recursion formulas and analytic representations hold for each и e G :

6Дг/;Е(г/))|,£и =  u,{u)b,^i{u;v{u)) +

bo{n;v{u)) = (яороіп'^)) ^ fjoVoiv) +  Y,{inyfj^v^{n)
i=l г=і

(23)

^sVsiv) +  '^ {ivyfjj^pjj^yv)
i=l

£r+s(> r̂+spr+s(*^ )̂) - 1

e=i

6Дг/;Т(г/))|,£к =  і\ІйУ й) bo{n;v{u)) +
\^=i /  j=i

o‘s+i (*^)Un =  {іпе,+іУУя,рУйУаУй) -Q ,u,(z/)].

(24)

(25)

In addition, ai{n) is defined by the last formula in (23), and the Хь-оУ') яге defined by the relations 
Xs;s{î )\sei4 =  1 and Xs;j(n) =  r iL j+1 arbitrary s G N\{1} and arbitrary j  G {1 , . . . ,  s - 1 } .

Proof. By virtue of assumption 5 of Theorem 6, for each v{u) G ^ е 2,к{^), there exists a unique 
solution b{u; v{u)) of system (14) in W c2,k{G). Therefore, b{u; v{v)) G І2-к for each г/ G G. It follows 
from the proof of Theorem 6 that for each и  ̂ G the component bo{v;v{v)) of this solution is 
an analytic function and is defined by formula (17), which is similar to the second formula in (23).

Let us show that the first and third formulas in (23) hold. Since, for any г/ G G, the quantity 
bo{n;v{u)) is defined by the second formula in (23), we find that it can be considered to be known. 
In the second equation of system (14), we transpose the term ivfibo{v,v{v)) to the right-hand side 
and rewrite this system without the first equation in the form

Here

іпеУ'^ьУ\т,й{п)) = кУ'^ъУ\т,и{п)) -  тУ\п), 
ineyhy\n;v{n))+inyyhy\n;v{n)) = xyhy\n;v{n)) -  тУ\п), 
ineyhy\n;v{n))+inyyhy\n;v{n)) = яУ'>ьУ\т,и{п)) -  тУ\п), . ..

ЬУ\и; v{u)) = Ь,+Уи; v{u)) for any s G No;
тУ\и) =  for any s g N and тУ\и) = iufibo{n;v{u)) + тУи);

(26)

Ab
"S —1 =  G.s and =  fs for any s G N\{1}; for any s G N.(1)

System (26) has the same form as system (14). By virtue of the existence of a unique solution of 
system (14) in І?2;к for any г/ G G and the definition of the class І?2;к, system (26) has a unique 
solution b'(z/))}|s£No in 2̂;K for any г/ G G as well. Eor any г/ G G, this solution coincides
with the subsequence У^\и;и{и)) =  {6я(г2;Т(г/))}|яем of the unique solution Т(г/))}|яеМо of
system (14) in І?2;к- This, together with the relation Т(г/))}|яеМо S XVc2,k{G), implies the
existence and uniqueness of the solution of system (26) in Wc2.k{G). Therefore, all assumptions
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666 ROGOVTSOV

of Theorem 6 are satisfied for system (26). By Theorem 6 and the above-introduced notation, 
formula (f7) acquires the form

+ 00

6і(г/;Т(г/)) =  Т(г/)) =  X !
3=0

here

^o'V) = 1,

=  1,

’ f ’ f ’ I E 1̂ 0? Qi — I ^£+l)

^r^V)keN  =

t(i)(^)ljeN —

r  =  l

 ̂ M )'~'r

(1)П е

Let us reproduce all above-described manipulations for system (26) under the assumption that
b\^\v]v{v)) is known. As a result, we obtain a system of the same form as (26). By reproducing 
such manipulations for the transformed systems with regard of formula (f7), the delfnition of 
the class t?2;K, the existence and uniqueness of the solution of any transformed system for any 
Т(г/) G W£2.ĵ (G) in W£2.ĵ (G), by taking into account the invariance of their forms (under the 
above-described actions), and by using induction, we obtain

bs{v,Ąv)) = b["\v,Ąv)) =  (4 "V o"V ^ )) (s p )  e No X G.
3=0

Here b^o\ir,Ąu)) = bo{v;Ąv)); p''o\v‘̂ ) =  рДг/ )̂, s G No; = f, s G No, and S)" (̂z/)(«)лл _

(27)

7(«)лл _

^ (^р’) e No X N; =  гг/{,6,_і(г/;Т(г/)) +  V ,̂u,(z/), s G N,
To =  'Го(г̂ ) =  'ipoVoiT̂ ) and Tj (v) = Tj^s{v) = {s,j) G N x N. However, to within
notation, the first and third formulas in (23) are identical to formula (27) for all s G N. Thus, all 
formulas in (23) are true. Formulas (23) readily imply formulas (24). The recursion formula (25) 
can be proved by a straightforward comparison of the expressions for as{u) ior s = n and s = n + 1 
(n G N) and by using induction. The proof of the theorem is complete.

Corollary 2. Let the assumptions of Theorem If be satisfied, and let the following conditions 
hold.

1. The limits lims^+oo(G+i/>^s) and lims^+oo(Cs/>^s) are finite and nonzero.
2. There exists an So S N such that the inequality

\̂ s\ |g / 6I > const > 0
r=l

holds for arbitrary s > Sq.
3. For each n G G, the characteristic equation corresponding to system (14) without the first 

equation has roots with distinct absolute values.
Then, for each n G G, the sequence {cTs(n)}seNo) where <то(п) is an arbitrary finite number and 

afiu) is defined by the third formula in (23) for any s G N, belongs to the class G;k , and there exists 
an Si G N such that the inequality \Us{u)\ < const < 1 holds for each s > Si.

Corollary 3. Suppose that assumptions of Corollary 2 are satisfied and in addition, for some 
n G G and for a finite n G No, the sequence b{n;V[o;n];oo{ĵ )) is the unique solution of system (14)
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in I?2;K for Е(г/) =  А[0;„];оо(г̂ )- Then, for a given г/ G G, this solution can be constructed with the 
use of the following algorithm.

1. Ifn  = 0, then

6 o ( ; ^ ; Q o ;o] ;o o W )  =  б Д г / ;  A [0;0] ;o o ( ; ^ ) ) U n  =
K£=l

2. If n =  1, then

bo{n;vio;i];oo{n)) = {яороіеуУф'фоУоіп) +  QiVi(z/)Si(z/)), афи) =
Ьфп; A [0 ; l ] ;oo W ) U n  =  фо;1];оо{п)) +  0 и а ф и ) ,

Is '^[0 ;1];сю Й ) \  SGN —  Ьо{п;фо ;1];сю {п)) + Х ^ А п ) а ф й ) .

3. If п >  2, then
П

Ьо{т,фо.п\-Лп)) = {яороУфу^ ' ^ ’̂ фУфеУфй),
£=0

^s{n)\(Г.э{п)\,е{п,...,і} =  (КэрвУф) фіпе,+іа,+фп) +  ф,йфп)],
Ьфп;фо;п];оо{п))\,еы = u,{u)b,^i{u; фо;п];оо{п)) +a,{u),

/ S \  9{s;n )

Is '̂ [0;п];оо SGN — (П Ue(n) \ 6о(г̂ ;г7[0;п];оо (-')) +  Е Х..,М'Г,М,

s > n + l 0 ,

V£=l

where в{з; п) = s for s G {1 , . . . ,  n} and в{з; n) = n for s > n.

Rem ark 4. Suppose that the assumptions of Corollary 2 are satisfied, for some г/ G G, 
the sequence {Us(i/)}seNo contains a countable subset of nonzero elements, and {и^„(г )̂}гем is a sub­
sequence of all such elements; moreover, jV S No and jVi < As for arbitrary Гі < r̂ - Then the 
relation

b,{v,v{v)) =  lim 6,(г/;А[оуу;оо(г^))
Г—>- +  oo

holds for any finite number s G No, where U[o;jv];oo(*̂ ) =  {гфп) , . . . ,  Vj {̂v), 0 ,0 ,0 ,...). In addition, 
for any finite r G N, the quantity Co;>];oo(* )̂) can be found with the use of the algorithm 
described in Corollary 3.

The above assertions permit one to find analytic representations of solutions of the inhomoge­
neous systems (4) for arbitrary {m,uoo,v) G Z x (0 ,1] x (T\!R(|m|; Wo)) if p (r ) G L2(—I,I) and 
gfn € 2̂;K for any m G Z. By taking into account the above-stipulated assumptions, the validity of 
the relations (|m|,Wo) G Q, Theorems 1-5, and Remark 3, one can readily prove the validity of all 
assumptions of Theorem 6 and Corollary 2. Therefore, for the solution of system (4), one can use 
Theorem If, Corollary 3, and Remark 4. We have thereby proved the following assertion.

Theorem  12. Let the following conditions be satisfied.
1. (|m|,Wo) G Q and v G G(|m|;wo) =  T\!R(|m|; Wo).
2. The nonnegative function p(/r) belongs to L2{—1, 1), and p(/a) dji =  2.
3. gf(u;m-,Wo) = gf {\т\;/лф =  /,+|„| 

Ri С [“ !) !]•
4. The sequence

gitv = {fs

s +  |m| ,\m (/ii) for arbitrary (s, |m|) G No x No, where

s +  |m|, |m Ы ) s GNq

contains finitely many nonzero elements, and n* is the maximum nonneqative integer such that
и т е - ,\ г г М )е о {п * > \ т \ ) .

DIFFERENTIAL EQUATIONS Vol. 51 No. 5 2015



668 ROGOVTSOV

5. The sequence

6(z/;m ;wo;C) =  {bs И1; Rb

is the unique solution of system (4) i n W f o r

J }

9ш =  Л о(Н І;/Х і),---,Л *_І„|(|т|;/іі),0, 0, 0, . . . } .

Then the desired solution of system (4) in luq)) can be found with the use of
the following analytic representations and recursion formulas.

1 . Ifn* = \m\, then

60 (г/; \m\;iiuUJo]9\L\i,,,ŷ J = Ы ] Wo) {\m\; 0) yf {\m\] 91),

bf (г/; |m|; /іі; Wo; И|; Wo)j bf (г/; |m|; /і і ; Wq;

where
uf{u; |m|;Wo) = (Л (HI; о̂)ро(Л; |m|;Wo))̂  ,

< (г /; |m|;wo)UN =  (Н | )(Л  ( H I ; ; |m|;wo))^^

2. If n* = HI + 1)

= uf{u; |m|;wo)K(HI;%o (HI;ri) +̂ Г(г̂ ; HI;‘̂ o)H(HI;0)H(HI;Ri)b 
afim, |m|;/ii;wo) = (ine  ̂(\т\)У̂ и̂  {m, |m|; Wq) Л (|m|; 0)H(HI; Ri)> 
bf {iy,\m\; 9йШо] 9\L\io.,̂ .,J\s&4

= uf{u;\m\]UJo)bf_i{iy; | m | ; / i i ; +̂ ьН(*̂ ; HhRb̂ ô), 
HH;HI;ri;wo;^1i,„̂ ,,̂ )Hn

=  ^ П Н (г^ ;Н Ы о)^  bH^;HI;Ri;wo;R|mi[„,i„^) + х Л Н ; Н Ы о )Н Л ;Н Н і;^ о ) ,  

where the quantity X^'(^’ Hh^^o) is defined by the relations

x^ H U n = 1, хЛЛ; HI;Wo) = П  HI;wo)
e=j+-y

for arbitrary s G N\{1} and for arbitrary j  G {1 , . . . ,  s — 1}.
3. If n* > HI +  2 , then

bf{u;\m\;9i;uio;9\ E
£=0

Ylufiv] HI; Wo)
r = 0

H(HI;0)H(HI;ri),

0 's  ( ^ ,  1 ^ 1 ?  T i l  b^o) |sG {n* —|m |,...,l}

= {wef{\m\))-^f{m, |m|; Wo)He}̂ +i(HI)H+i(̂ ;̂ HI;Rb Wo) + H(HI; 0)H(HI; Ri)b
0 's  ijO^ \cn\^ /X i ,  W o ) |s>n* —|m| +  l  0 ;

Л(г̂ ; HI; Rb Wo;
= <(г/; |m|;wo)6,Ei(*̂ ; HI;Rb W o ; + (rf{v, HhRRWo),
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1[0;гг*-| |s GN

[0;гг*-|-\m\]UJo)j bo(u] \m\] Hi] шо] g

e {s ;n *  — \m\)

+  Xs-,jî ',\'m\',‘̂ o)cr îT ]̂\m\]Hi]Uo).
i=l

Rem ark 5. Let assumptions 1-3 of Theorem 12 be satisfied, and let

6 ^ (z /;m ;w o ;0  =  6^(г/; \m\] Нй Uq] д1ь\) = Ы ] Hi] Uo] g L )} sGNq

be the unique solution of system (4) in 2,К2(|ггг|) (G(|m|;wo)) for the case in which the sequence

g^ = ды\ = {U s +  |m|; \m (fo )} s GNq

contains a countable subset of nonzero elements and {/jv+|m|Pĵ +̂|m|.|m|(Ri)}reN is a subsequence of 
all such elements; moreover, jV S No and < 4V2 for arbitrary Гі < Г2. Then the relation

b^iv]\m\]Hi]UJo]gl\) = b îv]\m\]Hi]UJo]gi  ̂ ^I [0;ir

holds for any finite s G No, where

5'|™|[0!з0.]!ос. ^  (/| m | P | m | ,| m | (R l)>  • • • > / : O i), 0,0,0,

In this case, for any finite r G N and for и G G(|m|;wo), the quantity b^{u] \m\] Hi ]^o',g\m\io.î ŷ ) 
can be found with the use of the algorithm described in Theorem 12.

If m =  0 and uio =  1, then Xq {0]1) =  0. Then system (4) does not satisfy assumption I of 
Theorem 6. In this case, system (4) splits in the finite subsystem consisting of its first two equations 
and the infinite subsystem containing all remaining equations. That infinite subsystem, in view of 
the equations of the finite subsystem, can be reduced to an infinite system that has the same form as 
system (4). If, in addition, г /G G(0; I) =  T\4?(0; I) and g  ̂{u]0]l)\sei4o = g'̂ {0] Ні)\зеіЧо = fsPs(Hi), 
then such an infinite system satisfies all assumptions of Theorem 6 and Corollary 2. We have thereby 
proved the following assertion.

Theorem  13. Let m =  0, Wq =  1, and v G G(0; 1), and let assumptions 2-5 of Theorem 12 be 
satisfied. Then the unique solution of system (4) in 1)) can be found with the use of
the following analytic representations and recursion formulas.

1. The relations
bf{u]0]Hi]l]go) = -{iiy)-fi3{l -  fi){iu)-^ +3fiPi{Hi) + ‘2iiybf{u]0]Hi]l]go)], 
b^{u]0]HT,T,go) =

hold for arbitrary n* G No; moreover, fiPfigi)  =  0 for n* =  0.
2. Ifn* G {0;1 ;2}, then

bf{v] d]Hi] 1]дУ) = (>if(0] 1)р2(У ]0] l))^H -2 +  5/2P2(Ri)^*2],
■ s + 2

Y\uf {u]0]l)ь у 2У-,о-,нй figo)\.seN =
£ = 3

bfiv]0]Hi]T,go)-

3 . If n* =  3, then

bf{v] d]Hi] 1]дУ) = (>if(0] 1)р2(У ]0] l))^H -2 +  5/2P2(Ri) +  7/зРз(/ХіХ(г^; 0; 1)], 
ЬУ2УУіТй figo)\sei4 = u y fiu ]0] l )byi(u]0]Hi] l ]gf )  + 5siU{y]Hi),

К+2УУ',ти figy)\ sGN
s + 2

Р  +  (г/;0;1)
,̂ =3

bf + ; 0; Hi] TJo)  +  U(+ ; Ні)хУУ]  0; 1),
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where =  7 /зРз(/іі)(>̂ з' ' ( 0; 1)рз(г^^;0; 1))-S  0; 1)U n =  1, and

s + 2

=  [ ]  < (г /;0 ;1 )
r = j + 3

for arbitrary s G N\{1} and j  G {1 , . . . ,  s — 1}.
4. If n* > 4, then

n* —2 /
=  (>^2''(0;1)р2(г^^;0;1))^^ ^ ( 2 і  +  5)Ф "̂ (̂г/;0;1) f / j+2Pj+2(Ri)

2=0 ^

= (>̂ s+2(0; l)ps+2(;̂ ;̂ 0; l)y^[{s + 3)гг/(т,\і(г/; 0;/ii; 1) + (2s + 5)/,+2Ps+2(Ri)]

and

erf {iy,0] 111] =  0,
Ь^+2(г^;0;/іі; 1;5o' ' )U n =  uf^^iv,0-,l)bf^^iv,0] іхй l ]gf )  + a fiv ,0]ixi] 1),

s + 2  1 e { s ; n *  — 2)

bf{n-,0-,iaul-,gf)+ ^  х('.Дг/; 0; 1)(т('(г/; 0 ;/Xi; 1),
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2^oj

К + 2 І т ^ ] 0 - , Ь й  i ; 5 o  ) U n  =  

bfiiy,0-,gi] l-,gf)\,>n*+i =

£ = 3

Y lu f{n -,0 -,l)

S
J = l

^=n* + l
b f , f u ] 0 ] g i ] l ] g f

Rem ark 6. Assume that m = 0, coo = 1, n e  G(0; 1), assumptions 2 and 3 of Theo­
rem 12 are true, {bf{u;0; 1;^ô )}s£No =  {bf l;5o^)}seNo is the unique solution of system (4)
in (G(0; 1)), and the sequence {/>P>(Ri)}reN of all nonzero elements of the sequence
g f  =  {/sPs(Ri)}seNo is a countable set {jr G No and < jr̂  for arbitrary Г\ < r̂ )- Then the 
relation

bf {v] t ) ]gi ] l ]gf )= Wm bf{v]t)]gi]l]gf ''
r —>-+oo -'[0;ir];o

holds for any finite number s G No, where gf̂  ̂ , , ^ =  ( / oPo(Ri), • • •, />P >(R i) j 0, 0 ,.. .) .  In this
case, for any finite r G N and for any n G G(0; 1), the number bf (г/; 0; /гр 1;gf̂  ̂ , can be found 
with the use of the algorithm described in Theorem 13.

8. ANALYTIC SOLUTIONS OF INHOMOGENEOUS SCALAR CHARACTERISTIC 
EQUATIONS OF THE THEORY OF RADIATION TRANSPORT

The following assertion can be proved with the use of Theorems 2, 3, 5, 12, and 13, Corollary 1, 
and Remarks 2, 3, 5, and 6.

Theorem  14. Let assumption 2 of Theorem 12 be satisfied, and let

V G G(|m|;wo) =  T\!R(|m|;wo)

for some pair (|m|,Wo) G No x (0,1]. Then, for arbitrary (r ,Ri) G [—1,1] x [—1,1], the resol­
vent Е|т|(г/;/і,/rpwo) of the IE in the family of IE (3) corresponding to the pair (]m],Wo) can be 
represented in the form

P|m| (^? R; R i ? ^o)
Wo

2(1 — іпд)
+ 00

P|m|(R,Rl) +  W o^ (2 (s  +  \m\) +  1)Л+|т|Р,+ |т|,|т|(̂ )̂ Лг̂ ; Ы', tiP, Wo]
s = 0

(28)
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where \m\; Hi;uio;gi î)}seNo is the unique solution of the system in the family (4) correspond­
ing to the index m G No in 2,К2(|ггг|) {G{\m\]Wo)) f o r = gf .  =  { / , s +  |m| ,\m ihi)}sei4o- In this
case, the following assertions hold.

1. For each fui G [—1,1], the series in (28) is convergent pointwise and uniformly with respect to 
ji on the interval [—1,1].

2. For arbitrary (r , Ri) G [—1,1] x [—1,1], the sum of the series in (28) is an analytic function 
o f u e  G(|m|; Wo).

3. //(|m|,Wo) G Q, then the sequence {bf gi^̂ )}seNo can be found by the algorithm
described in Theorem 12 and Remark 5.

4. If m = 0 and uio =  1, then the sequence {bf{u;0;ij,i;l;gf )}sg:jg is defined by the algorithm 
described in Theorem 13 and Remark 6.

The following assertion can be proved with the use of Theorems 1-5, Remark 2, the Fubini theo­
rem, Theorem 2 in [12], the theorem on the addition of Legendre polynomials. Corollary 1, and the 
definition of resolvents of the lEs (1) and (3) and elements of the sequences g^  ̂ = {gf (jmj; Ri)}seNo
and {bfim,\m\]iai]Uo-,g^^\)}seNo-

Theorem  15. Let assumption 2 of Theorem 12 be satisfied, and let v G Glwfi) =  T\!R(wo). 
Then the resolvent of the IE (1) can be represented in the analytic form

T(n; Q; Op Wo)

Wo
4тг(1 — in/r)

(Q, Qi, Wo) G Q X Q X (0,1]

where

p(Q ■ Qi) +  Wo EE ̂  sm^ s ,m ітЖ-\ш\і^ш-,іійШо-,ді^„^^)со8{гп{ір- ip i ) )
s = 0  m = 0

(29)

(̂ ‘2 s  T  l ) / s ( ^ 0 m  T  2 ( 1  ^ 0 s ) ( l  ^ O m )) -

In addition, for any Qi G Q, the series in (29) is convergent pointwise and uniformly with respect to 
й on Q; moreover, all elements of the sequences {6)^(n;m;/ri;wo;^|)(j|)}(s;m)eNox{o,...,s} can be found 
with the use of the algorithms described in Theorems 12 and 13 and Remarks 5 and 6.

Rem ark 7. Let assumption 2 of Theorem 12 be satisfied for some pair

(jmj. Wo) G No X (0,1] 

and let

v = x + iy eG(\m\-,uo), g f , = g L  = {fs s +  |m|, |m (R i)} s GNo ?

6 ^ (n ;m ;w o ;0  =  6(n; jmj;/гр Wo;^„,) =  {bf{m, jmj;/гр Wo; |̂„|)}«еМо

be the unique solution of the corresponding system in the family (4) in the class

Wr2,K2d..|)(G'(HI;‘̂ o)).

Then the following symmetry properties hold:

Refibfix + iy,\m\-,ixi-,Uo-,gî ^̂ )] = Refibf{-x + iy,\m\-,iai-,Uo-,gî ^̂ )],
Im[6)^(w +  iy;|m|;/ri;wo;5|l|)] =  - lm[ bf  { - x  + iy,\m\] la^Uo] gî ^̂ )], s G No-

The use of these symmetry properties permits dramatically reducing the amount of computations 
for finding numerical values of the resolvents R, Ri',aio) and Г(г/; Q, Qi; Wo) with the use of
formulas (28) and (29).
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9. APPENDIX
Let us derive an analytic representation of the Green function

^o)
of the dimensionless scalar equation of radiation transport for the case of an infinite plane-parallel 
macroscopically homogeneous and locally isotropic disperse medium. This function is a solution of 
the following canonical BVP for the theory of the radiation transport [10] :

672 ROGOVTSOV

9Goo(r, Q;ti,Q i ;(Uo) 
дт

=  Q ;ti, fii; Wo) +  ^  / P(^ ' Qi ; Wq) dQ' +  -  гі)5(/г -  iJ.i)6{(p -  (pi),

Wo G (0 ,1), (Q, Qi) G D X Q,

In system (30), 5{x) is the Dirac 5 function. It was shown in [3] that

(r, Ti) G M X R (R =  (—oo, T oo)), 

lim Goo(r, Q ;ti,Q i ; wo) =  0.
(30)

where

G o o ( r ,  Q ; t i , Q i ; w o )  =  0 (r  -Ті,р)5{р -  pi)5{(p -  ipi) + GI {̂t,Q;ti,Qi ; uio),

0(r,/r) =  6'(r/r)|/r|^^exp(-|r//r|)

[в{т) =  1 for r  > 0 and в{т) =  0 for r  < 0], and the function GI^{t, D ;ti, Dp Wo) is a solution of 
the BVP that coincides with the BVP (30) with the functions

G o o ( r ,  D; Ti, Dp Wo), 6{t -  ті)5{р -  pi)5{(p -  ipi)

replaced by the functions G),o(r, D; гі. Dp Wo) and (wo/(47r))0(r — ri,/ii)P (D  ■ Di), respectively. 
Let the function p(/r) satisfy the Holder condition [13] on [—1,1]. Then, by using the Case 
method [8], one can show that if at least one of the inequalities R /  0 and /гі /  0 is satisfied, 
then GI^{t, D; ti. Dp Wo) G L i (—oo. T oo) as a function of the variable r. Under these assumptions, 
by taking into account the linearity of the BVP for the function GI^{t, D; ti. Dp Wo) and the IE for 
the resolvent Г(г/; D, Dp Wo) and by using the Eourier transform, we obtain the relation

G;[„(z/;D;rpDpwo) =  (\ /^ ( l  -  гг//гі))^^ ехр(гг/гі)Г(г/; D; Dp Wq),

where и is the parameter of the Eourier transform [u G (—oo. Too)] and the function 
С)^(г/, D; Ti, Dp Wo) is the Eourier range of the function G)^(r, D; Гі, Dp Wo). By using Theorem 4 
and the IE (13), we show that the asymptotics ]Г (̂г/; D; Dp Wo)] =  0(]г/]^Чп ]г/]) holds for any 
Wo G (0,1) as г/ ^  Too. By taking into account the relations in this section. Theorem 4, and the 
theorem on the convolution with the use of the inverse Eourier transform, we obtain the desired 
analytic representation

Gooi,'̂  ̂D, Ti, Di, Wo)

Wo=  0 (r -  ri,/r)5( / r - / i i )5((p -  (pi) +  — p(D ■ Di) / &{t - t ,p)Q{ t -Ti ,p i )dt

+
I' ехр(-гг/(г -  гі))

Втг̂  J (1 — гиp) (1 — гиUl) Y  ŝmK,rrXl )̂K-\rn\(g  rri] /rp Wo; g^) cos(m((p -  ipi))
= 0 m =0

du,

(31)
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where jii Ф 0. In this case, the second integral on the right-hand side in the representation (31) 
is convergent absolutely for arbitrary (r, гі, Q, Qi, Wo) G M x R x Q x Qq x (0,1), where Qq is the 
unit sphere after the deletion of the unit circle defined by the conditions =  (тгІ2), (p G [—7г,тг]. 
To find the Green function for pi =  ±0, one can use its symmetry

G o o i y { y j  U ;  ^o) • (32)

The validity of relation (32) follows directly from the mutual principle [8, Chap. 2] and the invariance 
of the solution of the BVP (30) under orthogonal transformations of the Euclidean point space £3 
which preserve the direction of the unit vector ei or change it to the opposite direction. In the 
derivation of the Green function for pi =  ±0 on the basis of relations (31) and (32), one should 
assume that R /  0 and treat as the sequence {/s+|m|Ps+|m|,|m|(R)}seNo-

In conclusion, note that, by using the analytic representation (31) and the GIRRM [9, 10], one 
can efficiently solve BVP for a scalar RTE in the case of practically arbitrary phase functions and 
disperse media of various configurations.
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