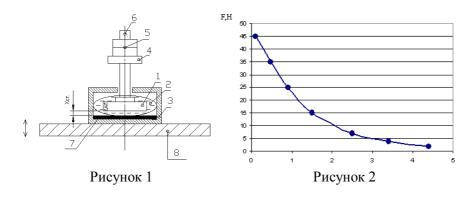
дальнейшем использовать часть этой воды для водоснабжения здания. Таким образом, создание подобных зданий, целых районов решили бы ряд социальных, энергетических и экологических проблем:

- создание городской архитектуры, обеспечивающей высокое качество среды обитания людей;
  - сохранение окружающей среды;
  - экономичность при поддержании жизненного цикла;
- отказ от использования технологических процессов и источников энергии, загрязняющих окружающую среду;
- сокращение использования топливно-энергетических ресурсов;
- увеличение объема использования возобновляемых источников энергии;
  - повышение качества микроклимата помещений;
- утилизация тепла и повторное использование водных ресурсов.


УДК 538.4+536.2

## ИССЛЕДОВАНИЕ ВИБРОЗАЩИТНЫХ ХАРАКТЕРИСТИК МАГНИТОЖИДКОСТНОЙ ОПОРЫ С ИСПОЛЬЗОВАНИЕМ ЭЛАСТОМЕРА

Трусевич Е.В.

Научный руководитель: канд. техн. наук Чернобай В. А., БНТУ

Представляют интерес виброзащитные опоры с использованием упругих свойств магнитной жидкости со свободной поверхностью в магнитном поле B настоящей работе экспериментально статические динамические характеристики исследованы И виброзащитной комбинированной системы (рис. предельных статических нагрузках на магнитожидкостную опору (уст=0) магнит 1 соприкасался с эластомером, и задаваемые возмущения гасились эластомером.



Методика эксперимента. Магнитожидкостная представляла собой постоянный феррит-бариевый магнит 1 в виде высотой 16мм. диаметром 28мм, намагниченном аксиальном направлении (рис. 1). Магнит покрывался магнитной жидкостью 2 с намагниченностью насыщения М = 44 кА/м и 3. Статические помещался корпус характеристики магнитожидкостной опоры (нагрузка-деформация) исследовались изменением веса груза 5, который определял начальное смещение магнита относительно эластомера  $\Delta x$ . Перемещение магнита и штока 4 с грузом  $\Delta x$  измерялось оптическим методом с помощью катетометра КМ-8.

Колебания системы задавались с помощью электродвигателя с эксцентриком по закону:  $x(t)=x_{cr}+x_0sincost$ , где  $x_{cr}$  – величина зазора в статике,  $x_0$  – амплитуда колебания груза относительно эластомера.

Результаты эксперимента.

Статика.

Линейная зависимость результирующей силы от деформации наблюдается на начальном участке, а с увеличением нагрузки система становится нелинейной, что связано с нелинейным распределением магнитного поля у поверхности постоянного магнита (рис.2). С увеличением деформации значение производной  $\partial F/\partial \Delta x$  возрастает. Для всех исследуемых объёмов заправки магнитной жидкостью существует максимальная нагрузка, при повышении которой опорный элемент не испытывает дальнейшего перемещения.

Динамика. Эффективность виброзащиты оценивалась при помощи коэффициента виброизоляции  $K_R$ , представляющего собой отношение измеряемых значений виброускорений на грузе и источнике колебаний (балке) -  $K_R$ = $w_{rp}$ ./ $w_{\text{ист}}$ . Условие эффективности виброзащиты по критерию  $K_R$  имеет вид  $K_R \le 1$ .

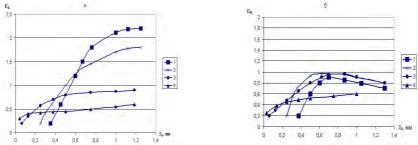



Рисунок 3. Влияние амплитуды возмущений  $S_0$  на  $K_R$  при различных частотах.

а) магнитожидкостная опора; б) магнитожидкостная опора с эластомером  $1-\upsilon=10\Gamma$ ц,  $2-\upsilon=12\Gamma$ ц,  $3-\upsilon=15\Gamma$ ц,  $4-\upsilon=18\Gamma$ ц.

Исследования магнитожидкостной опоры показали существенную зависимость коэффициента виброизоляции от амплитуды вынуждающего колебания  $S_0$  (рис. 3).

Видно, что при достижении амплитуд вынужденных колебаний  $\sim 0.5$ -0,7 мм и частотах, близких к резонансным, магнитожидкостная опора работает не эффективно, т.е.  $K_R>1$  (рис. 3, а). Использование эластомера в качестве основания обеспечивает положительную работу комбинированной системы во всём исследуемом интервале амплитуд  $S_0$  (рис. 3, б).

На рис. 4 приведены зависимости коэффициента виброизоляции опоры от частоты вынуждающих колебаний  $\upsilon$ . В частотном интервале 18-30  $\Gamma$ ц магнитожидкостная опора работает эффективно  $K_R < 1$  (кривая 1,2, рис. 4).

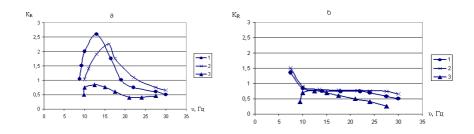



Рисунок 4. Частотные зависимости  $K_R$  а - магнитожидкостная опора; б - магнитожидкостная опора с эластомером

Увеличение объёма заправки с 30 см<sup>3</sup> (кривая 1) до 40 см<sup>3</sup> (кривая 2), которая является оптимальной для наших условий при нагрузке 10H, снижает резонансные значения K<sub>R</sub> с 2,7 до 2,2. При воздействии вынужденных колебаний на объём магнитной жидкости его форма изменяется, внутри объёма генерируются течения, которые за счёт вязкой диссипации гасят энергию колебаний. Увеличение объёма МЖ приводят к увеличению диссипируемой энергии и K<sub>R</sub> снижается. В комбинации эластомером (рис. 4, б), только в узком спектре частот 7,5÷10 Гц  $K_R > 1$  (резонансные частот ы эластомера), с ростом частот до 30  $\Gamma$ ц устройство обеспечивает эффективную виброзащиту (K<sub>R</sub><1).

Выводы: использование эластомера в качестве основания для магнитожидкостной опоры увеличивает удельные нагрузки, расширяет интервал рабочих амплитуд и частот.