

Министерство образования Республики Беларусь

БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра «Двигатели внутреннего сгорания»

ГАЗОВАЯ ДИНАМИКА И АГРЕГАТЫ НАДДУВА

Методические указания по выполнению курсового проекта

Минск 2009

Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра «Двигатели внутреннего сгорания»

ГАЗОВАЯ ДИНАМИКА И АГРЕГАТЫ НАДДУВА

Методические указания по выполнению курсового проекта для студентов специальности 1-37 01 01 «Двигатели внугреннего сгорания»

УДК 621.43.013 (075.4) ББК 31.365 (075.4) Г 13

Составители: Г.М. Кухарёнок, А.Н. Петрученко

Рецензенты:

П.Н. Кишкевич, доцент кафедры «Гидропневмоавтоматика и гидропневмопривод» БНТУ; С.П. Севиздрал, заместитель главного конструктора ОАО МАЗ

Методические указания содержат основные положения по выполнению курсового проекта по дисциплине «Газовая динамика и агрегаты наддува».

В них изложены методики расчета параметров турбины и компрессора, подшипникового узла турбокомпрессора, охладителя наддувочного воздуха и профилирования лопаток колес турбины и компрессора, даны рекомендации по выбору исходных данных.

ВВЕДЕНИЕ

В настоящем пособии приведены методические указания по выполнению основных этапов курсового проекта по дисциплине «Газовая динамика и агрегаты наддува»: расчет параметров турбины и компрессора, подшипникового узла, определение параметров охладителя наддувочного воздуха и профилирование лопаток колес турбины и компрессора.

При расчете системы турбонаддува определяется тип турбокомпрессора и основные характеристики центробежного компрессора и центростремительной турбины. Гидродинамический расчет подшипников заключается в определении минимальной толщины масляного слоя и в определении минимального количества масла, подаваемого к трущимся поверхностям, достаточного для длительной безаварийной работы турбокомпрессора. Расчет охладителя наддувочного воздуха заключается в выборе его геометрических параметров и определении его теплоотдающей эффективности. Профилирование лопаток колес турбины или компрессора состоит в определении координат профилей с прямым и серповидным участками, а также с различными величинами нахлеста, и в расчете кривой обвода и профилировании проточной части колеса.

В процессе выполнения курсового проекта студенты закрепляют теоретические знания по газодинамическим расчетам процессов, протекающих в проточной части турбины и компрессора, а также получают знания о конструкции агрегатов наддува.

Методические указания предназначены для студентов специальности «Двигатели внутреннего сгорания».

1. ПРИМЕРНОЕ СОДЕРЖАНИЕ ПОЯСНИТЕЛЬНОЙ ЗАПИСКИ ПРОЕКТА

Студенты выполняют курсовой проект по индивидуальным заданиям, выдаваемым преподавателем. Пояснительная записка должна содержать следующие элементы.

- 1. Титульный лист.
- 2. Задание к работе.
- 3. Оглавление.
- 4. Введение.
- 5. Выбор параметров турбокомпрессора
- 6. Газодинамический расчет компрессора.
- 7. Газодинамический расчет турбин.
- 8. Гидродинамический расчет подшипникового узла.
- 9. Методику профилирования лопаток колеса турбины и компрессора.
 - 10. Проверочный расчет охладителя наддувочного воздуха.
 - 11. Заключение.
 - 12. Список использованных источников.
 - 13. Приложения.

Приведенное выше содержание пояснительной записки является примерным. Конкретные этапы работы и их содержание должны быть отражены в листе задания.

В разделе «Методика профилирования лопаток колеса турбины и компрессора» студент должен изложить материал, относящийся к выполнению поставленной задачи, а также подготовить исходные данные расчета с помощью ЭВМ. Результаты расчета размещаются в приложении и используются при построении профиля лопатки колеса.

Оформление материалов курсового проекта осуществляется в соответствии с требованиями СТП 3.01–2003 «Общие требования и правила оформления». Образец титульного листа представлен в приложении А.

2. ТУРБОКОМПРЕССОР

Построение общего вида турбокомпрессора производится после проведения расчетов турбокомпрессора и его подшипникового узла, для этого используются принятые и рассчитанные значения параметров.

2.1. Расчет параметров турбокомпрессора

Для форсирования двигателей применяются турбокомпрессоры (ТК), сочетающие в одном агрегате газовую турбину и центробежный компрессор.

Турбокомпрессоры выпускаются двух типов: с радиальной центростремительной (ТКР) и осевой газовыми турбинами.

В системах наддува автомобильных и тракторных дизелей применяются одноступенчатые турбокомпрессоры, состоящие из центробежного компрессора и радиальной центростремительной турбины

Турбокомпрессоры типа ТКР имеют малую массу и обладают хорошей приемистостью. Общий КПД их не ниже 0,45. Ресурс турбокомпрессоров приближается к ресурсу остальных узлов дизелей. Окружная скорость рабочих колес турбокомпрессоров определяется напором, развиваемым компрессором. В зависимости от уровней окружной скорости и температуры отработавших газов выбирается материал рабочего колеса. При максимальной температуре газа перед турбиной 700 °C колеса турбины изготавливают из сплавов на никелевой или титановой основе.

По давлению наддува турбокомпрессоры делятся на группы.

- 1. Низкого давления (исполнения H) со степенью повышения давления $\pi_{\rm K}$ от 1,3 до 1,9 включительно.
- 2. Среднего давления (исполнения C) с $\pi_{\rm K}$ от 1,9 до 2,5 включительно.
 - 3. Высокого давления (исполнения B) с π_{K} от 2,5 до 3,5.

В настоящее время для наддува автотракторных двигателей в соответствии с РД 37.001.242–92 применяются турбокомпрессоры ТКР-4,5, ТКР-5,5, ТКР-6,5, ТКР-7,5 и ТКР-9, каждый из которых предназначается для наддува двигателей в определенном диапазоне мощностей. Причем, чтобы обеспечить соответствие параметров турбокомпрессора и двигателя, модели агрегатов наддува имеют модификации, которые отличаются между собой проточными частями компрессора и турбины при сохранении базовых диаметров колес. Базовый диаметр колеса компрессора (такой же диаметр и у колеса турбины), в сантиметрах, указывается последней цифрой в маркировке турбокомпрессора. Например, ТКР-4,5, ТКР-5,5 и т.д.

Исходные данные для расчета

Исходными данными служат следующие параметры дизеля и параметры окружающей среды:

мощность N_e , кВт;

частота вращения n, мин⁻¹;

литраж V_{π} , л;

удельный расход топлива g_e , г/кBт·ч (g_e = 200–240 г/кBт·ч);

коэффициент избытка воздуха α (α = 1,6–2,0);

коэффициент наполнения η_{ν} ($\eta_{\nu} = 0.85 - 0.95$);

коэффициент продувки ϕ_{π} (ϕ_{π} = 1,05–1,15);

сопротивление воздухоочистителя $\Delta p_{\rm вп}$, МПа ($\Delta p_{\rm вп} = 0.003 - 0.007$ МПа);

сопротивление холодильника $\Delta p_{\rm x}$, МПа ($\Delta p_{\rm x} = 0.003 - 0.007$ МПа);

сопротивление на выпуске $\Delta p_{\text{вып}}$, МПа ($\Delta p_{\text{вып}} = 0.001 - 0.004$ МПа);

температура воздуха после холодильника T_s , К ($T_s = 315-320$ К); температура отработавших газов T_r , К ($T_r = 800-900$ К); давление окружающей среды p_0 , МПа ($p_0 = 0,1$ МПа); температура окружающей среды T_0 , К ($T_0 = 280-290$ К).

Конкретные значения этих параметров приведены в задании для расчета. Если какие-либо значения в задании не указаны, студент самостоятельно выбирает необходимые для расчетов величины из представленных выше интервалов. По исходным данным студенты определяют основные параметры системы турбонаддува и проточных частей компрессора и турбины.

Основные параметры системы турбонаддува

1. Секундный расход воздуха

$$G_{\rm B} = \frac{g_e \cdot N_e \cdot \alpha \cdot L_0 \cdot \varphi_{\rm II}}{3.6 \cdot 10^6}, \ \text{kg/c},$$

где L_0 – количество воздуха, необходимое для сгорания 1 кг топлива. Для расчета принимаем $L_0 = 14,5-15$ кг/кг.

2. Секундный расход газов через турбину

$$G_{\Gamma} = G_{\rm B} \left(1 + \frac{1}{\alpha \cdot \varphi_{\Pi} \cdot L_0} \right), \, \text{kg/c}.$$

3. Плотность воздуха на выходе из воздухоочистителя

$$\rho_1 = \frac{(p_0 - \Delta p_{\text{BH}}) \cdot 10^6}{T_0 \cdot R_{\text{p}}}, \, \text{kg/m}^3,$$

где $R_{\rm B}$ – газовая постоянная для воздуха, $R_{\rm B} = 287 \frac{\rm Дж}{\rm кг \cdot K}$.

4. Плотность воздуха на входе в двигатель

$$\rho_S = \frac{120 \cdot 10^3 \cdot G_{\rm b}}{V_{\rm m} \cdot n \cdot \eta_{\rm d}}, \ {\rm kg/m}^3.$$

5. Давление воздуха на выходе из компрессора.

Для системы наддува без промежуточного охлаждения наддувочного воздуха

$$p_{\rm K} = (p_0 - \Delta p_{\rm BII}) \cdot \left(\frac{\rho_S}{\rho_1}\right)^{n_k}$$
, MIIa,

где n_k — показатель политропы сжатия в компрессоре, n_k = 1,7—1,8. Давление p_{κ} равно давлению на входе в двигатель: $p_{\kappa} = p_s$. При наличии промежуточного охлаждения

$$p_s = 10^{-6} \cdot \rho_S \cdot T_S \cdot R_B$$
, MIIa.

Давление на выходе из компрессора

$$p_{\rm K} = p_{\rm S} + \Delta p_{\rm X}$$
, M Π a.

6. Степень повышения давления в компрессоре

$$\pi_{\mathrm{K}} = \frac{p_{\mathrm{K}}}{p_0 - \Delta p_{\mathrm{BII}}}.$$

Значения π_{κ} для автотракторных двигателей лежат в пределах 1,4–2,6.

По результатам расчета выбирается типоразмер турбокомпрессора в соответствии с приложением Б. При выборе турбокомпрессора для обеспечения высокой приемистости двигателя необходимо выбирать рабочие колеса с возможно меньшим наружным диаметром.

Расчет компрессора

Основные размеры компрессора показаны на рисунке 2.1. Дополнительные исходные данные для расчета компрессора выбираются по таблице 2.1.

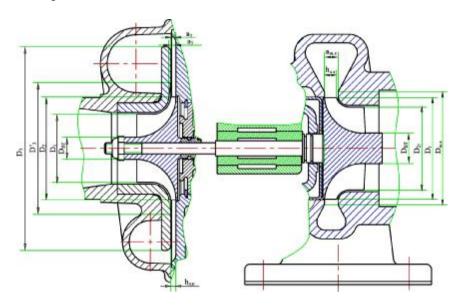


Рисунок 2.1 – Схема турбокомпрессора

Таблица 2.1 – Исходные данные для расчета компрессора

Наименование параметра	Обозначение	Величина
1	2	3
Относительный наружный диаметр колеса компрессора на входе	$\overline{D}_{\!1}$	0,57-0,75
Относительный диаметр втулки	$\overline{D}_{ exttt{BT}}$	0,23-0,27
Число лопаток колеса компрессора	$\mathcal{Z}_{\mathbf{K}}$	12–23

1	2	3	
Коэффициент потерь от трения диска	~	0,04-0,08	
о воздух	$lpha_{\scriptscriptstyle m I\!\!\!/}$	0,04-0,08	
Адиабатический КПД компрессора	$\eta_{\kappa.aд}$	0,65-0,85	
Коэффициент стеснения на входе в колесо	τ_1	0,94-0,97	
Угол атаки, градус	i	8–10	
Скорость потока в подводящем	C_{a}	60–150	
патрубке, м/с	C_a	00-130	
Адиабатический КПД процесса сжатия	n	0,76-0,82	
в колесе	$\eta_{ ext{кол.ад}}$	0,70-0,82	
Коэффициент стеснения потока на выходе из	τ.	0,94-0,97	
колеса	$ au_2$	0,94-0,97	
Относительная величина наружного диамет-	\overline{D}_3	1,6–1,8	
ра диффузора	D_3	1,0-1,6	
Адиабатический КПД диффузора компрес-	n .	0,5–0,6	
copa	$\eta_{ ext{диф.ад}}$	0,5-0,0	
Скорость потока в выходном патрубке, м/с	C_4	60–80	
Адиабатический КПД улитки	$\eta_{ m y.ag}$	0,30-0,45	

1. Адиабатический напор в компрессоре

$$H_{\text{к.ад}} = \frac{K}{K-1} R_{\text{в}} \cdot T_0 \left(\pi_{\text{к}}^{\frac{K-1}{K}} - 1 \right),$$
Дж,

где K – показатель адиабаты для воздуха, K = 1,41.

2. Наружный диаметр колеса компрессора на входе и диаметр втулки

$$D_{\mathrm{l}} = \overline{D_{\mathrm{l}}} \cdot D_{\mathrm{2}}$$
 , mm; $D_{\mathrm{bt}} = \overline{D_{\mathrm{bt}}} \cdot D_{\mathrm{2}}$, mm.

3. Средний диаметр колеса на входе

$$D_{\rm lcp} = \sqrt{\frac{D_{\rm l}^2 \cdot D_{\rm BT}^2}{2}} \ , \ {\rm mm}; \qquad \overline{D_{\rm lcp}} = \frac{D_{\rm lcp}}{D_2} \, . \label{eq:Dlcp}$$

4. Коэффициент мощности

$$\mu_N = \frac{1}{1 + \frac{2}{3} \cdot \frac{\pi}{z_{\rm K}} \cdot \frac{1}{1 - \overline{D_{\rm lcp}^2}}}.$$

Величина μ_N лежит в пределах 0,8–0,9.

5. Коэффициент напора

$$\overline{H_{\kappa}} = 2 \left(\mu_N + \frac{\alpha_{\pi}}{2} \right) \cdot \eta_{\kappa.a\pi}.$$

6. Окружная скорость колеса

$$U_{\rm K} = \sqrt{2 \frac{H_{\rm K.a.l.}}{\overline{H_{\rm K}}}}$$
, m/c.

Величина U_{κ} лежит в пределах 200–400 м/с.

7. Частота вращения ротора

$$n_{_{
m TK}} = 60 \cdot 10^3 \, rac{U_{
m K}}{\pi \cdot D_2} \, , \, {
m Muh}^{-1}.$$

Полученные значения частоты вращения ротора нужно сравнить со значениями, представленными в таблице приложения Б. Если полученное значение частоты выходит за пределы, указанные в таблице приложения, произвести корректировку типоразмера турбокомпрессора. При превышении указанных значений частоты вращения ротора перейти к более высокому типоразмеру турбокомпрессора, либо рассмотреть вопрос об увеличении количества турбокомпрессоров. В этом случае суммарный расход воздуха уменьшается на величину

кратную количеству применяемых турбокомпрессоров и дальнейший расчет производится без изменений.

8. Осевая составляющая скорости на входе в колесо компрессора

$$C_{\text{lax}} = 1,274 \cdot 10^6 \frac{G_{\text{B}}}{\tau_1 \cdot \rho_1 \left(\overline{D_1}^2 - \overline{D_{\text{BT}}^2}\right) \cdot D_2^2}, \text{ m/c.}$$

9. Окружная скорость на диаметре D_{1cp}

$$\boldsymbol{U}_{\kappa D_{\rm lcp}} = \boldsymbol{U}_{\kappa} \cdot \overline{D_{\rm lcp}}$$
 , m/c.

10. Угол потока на входе в колесо

$$\beta_1 = \operatorname{arctg} \left(C_{1ax} / U_{\kappa D_{1cp}} \right)$$
, градус.

Величина β_1 лежит в пределах 20–35 градусов, максимальный КПД достигается при $\beta_1=30$ –35 градусов.

11. Угол лопатки на входе в колесо

$$\beta_{1\pi} = \beta_1 + i$$
, градус.

12. Температура воздуха на входе в колесо

$$T_1 = T_0 - \frac{C_{1ax}^2 - C_a^2}{2010}$$
, K.

13. Давление воздуха на входе в колесо

$$P_1 = P_0 \left(rac{T_1}{T_0}
ight)^{rac{n_1}{n_1-1}},$$
 МПа.

Здесь n_1 – показатель политропы, n_1 = 1,38.

14. Окружная составляющая абсолютной скорости воздуха на выхоле из колеса

$$C_{2u} = \mu_N \cdot U_{\rm K}$$
, m/c.

15. Радиальная составляющая абсолютной скорости на выходе из колеса

$$C_{2r} = (1.05 - 1.1) \cdot C_{1ax}$$
, m/c.

16. Угол абсолютной скорости на выходе из колеса

$$\alpha_2 = \operatorname{arctg}(C_{2r} / C_{2u})$$
, градус.

17. Абсолютная скорость на выходе из колеса

$$C_2 = C_{2u}/\cos\alpha_2$$
, m/c.

18. Температура воздуха за колесом

$$T_2 = T_1 + \left(\mu_N + 0.5\alpha_{\pi} - 0.5\mu_N^2\right) \frac{U_{\kappa}^2}{1005}$$
, K.

19. Давление воздуха за колесом

$$P_2 = P_1 \left(\frac{T_2}{T_1}\right)^{\frac{K}{K-1}} \eta_{\text{кол.ад}}$$
, МПа.

20. Плотность воздуха за колесом

$$\rho_2 = 10^6 \cdot \frac{P_2}{T_2 \cdot R_B}, \text{ KG/M}^3.$$

21. Высота лопатки на выходе из колеса

$$h_{\text{\tiny JI.K}} = 3{,}183 \cdot 10^5 \, \frac{G_{\text{\tiny B}}}{\tau_2 \cdot \rho_2 \cdot C_{2r} \cdot D_2} \, , \, \text{mm}.$$

Величина $h_{\text{л.к}}$ равна 5–9 мм.

22. Относительная высота лопатки

$$\overline{h_{\scriptscriptstyle \rm JI,K}} = h_{\scriptscriptstyle \rm JI,K} / D_2 \,.$$

23. Ширина безлопаточного диффузора

$$b_3 = h_{\text{ILK}} + 0.5$$
, mm; $b_2 = (0.7 - 0.8)b_3$, mm.

24. Радиальная составляющая скорости на входе в диффузор

$$C'_{2r} = C_{2r} \cdot \tau_2 \frac{h_{\text{\tiny JI.K}}}{b_2}, \text{ M/c.}$$

25. Диаметр, соответствующий точке перехода от наклонной передней стенки к параллельным стенкам

$$D_3' = D_2 + 2\delta + 2\frac{b_3 - b_2}{\text{tg}\theta}$$
, mm,

где δ – радиальный зазор между колесом и корпусом, может быть принят равным 1 мм;

- θ угол наклона передней стенки, $\theta = 8^{\circ}$.
- 26. Наружный диаметр безлопаточного диффузора

$$D_3 = \overline{D_3} \cdot D_2$$
, mm.

27. Окружная составляющая абсолютной скорости воздуха на выходе из безлопаточного диффузора

$$C_{3u} = C_{2u} \frac{D_2}{D_3}$$
, m/c.

28. Радиальная составляющая скорости

$$C_{3r} = C'_{2r} \frac{b_2 D_2}{b_3 D_3}, \text{ m/c}.$$

29. Скорость воздуха на выходе из диффузора

$$C_3 = \sqrt{C_{3u}^2 + C_{3r}^2}$$
, M/c.

30. Температура воздуха на выходе из диффузора

$$T_3 = T_2 + \frac{C_2^2 - C_3^2}{2010}$$
, K.

31. Давление воздуха на выходе из диффузора

$$P_3 = P_2 \left(\frac{T_3}{T_2} \right)^{\frac{k}{k-1}} \eta_{\text{диф.ад}}$$
, МПа.

32. Плотность воздуха на выходе из диффузора

$$\rho_3 = 10^6 \cdot P_3 / (T_3 \cdot R_B), \text{ KeV/m}^3.$$

33. Диаметр выходного патрубка

$$D_{\text{патр}} = 1,129 \cdot 10^3 \sqrt{\frac{G_{\text{B}}}{\rho_3 \cdot C_4}}$$
, мм.

Для компрессоров автотракторных двигателей $D_{\text{патр}} = 40-70$ мм. 34. Температура воздуха на выходе из компрессора

$$T_4 = T_3 + \frac{C_3^2 - C_4^2}{2010}$$
, K.

35. Давление воздуха на выходе из компрессора

$$P_4 = P_3 \left(\frac{T_4}{T_3}\right)^{\frac{k}{k-1}} \eta_{y,a,\pi}$$
, M Π a.

36. Плотность воздуха на выходе из компрессора

$$\rho_4 = 10^6 \cdot \frac{P_4}{T_4 \cdot R_{\rm B}}, \, \text{KG/M}^3.$$

37. Степень повышения давления, полученная в результате расчета:

$$\pi_{\mathrm{K}}' = \frac{P_4}{P_0 - \Delta P_{\mathrm{BII}}}.$$

38. Адиабатический напор в компрессоре

$$\begin{split} H_{\text{к.ад}} &= \frac{K}{K-1} R_{\text{B}} \big(\! \big(T_2 - T_0 \big) \! \cdot \! \eta_{\text{кол.ад}} + \\ &+ \big(T_3 - T_2 \big) \! \cdot \! \eta_{\text{диф.ад}} + \! \big(T_4 - T_3 \big) \! \cdot \! \eta_{\text{у.ад}} \big) \! + \! \frac{C_4^2}{2}, \; \text{Дж.} \end{split}$$

39. Полный напор в компрессоре

$$H_{\text{K}} = \frac{K}{K-1} R_{\text{B}} (T_4 - T_0) + \frac{C_4^2}{2}, \text{Дж.}$$

40. Адиабатический КПД компрессора

$$\eta_{\kappa.a,\mu} = \frac{H_{\kappa.a,\mu}}{H_{\kappa}}.$$

41. Расчетное значение КПД колеса

$$\begin{split} & \eta_{\text{кол.ад}}' = \\ & = \frac{H_{\text{к.ад}} /\! \left(\frac{k}{k-1} R_{\text{B}}\right) \!\! - \! \left(T_3 - T_2\right) \! \cdot \! \eta_{\text{диф.ад}} \! - \! \left(T_4 - T_3\right) \! \cdot \! \eta_{\text{у.ад}} \! - \! \frac{C_4^2}{2 \frac{k}{k-1} \cdot R_{\text{B}}}}{T_2 \! - \! T_0}. \end{split}$$

Допускается отклонение до 3 % значения $\eta'_{\text{кол.ад}}$ от величины, принятой для расчета. Если отклонение больше 3 %, то расчет надо повторить с учетом расчетной величины $\eta'_{\text{кол.ад}}$.

Расчет турбины

Исходные данные для расчета турбины приведены в таблице 2.2. Основные размеры турбины показаны на схеме турбокомпрессора (см. рис. 2.1).

Таблица 2.2 – Исходные данные для расчета турбины

Наименование параметра	Обозначение	Величина
1	2	3
Мощностной КПД турбины	η_{Ti}	0,76–0,80
Механический КПД турбокомпрессора	$\eta_{\scriptscriptstyle \mathrm{M}}$	0,88-0,94
КПД на окружности колеса турбины	η_u	0,80-0,85

1	2	3
Коэффициент скорости в безлопаточном	(0	0,90-0,94
направляющем аппарате	φ	0,90-0,94
Относительная радиальная протяженность	${r}$	0.07.0.00
щелевого конфузора	$r_{ m III.K}$	0,07–0,09
Степень радиальности турбины	μ	0,58-0,65
Угол атаки, градус	i	8–10
Коэффициент стеснения потока на выходе	τ.,	0,94–0,96
из колеса турбины	-2 _T	0,94-0,96

Определение основных параметров турбины ведется по следующим формулам.

1. КПД турбокомпрессора

$$\eta_{\text{TK}} = \eta_{\text{K.ad}} \cdot \eta_{Ti} \cdot \eta_{\text{M}}$$

2. Адиабатический напор, срабатываемый в турбине:

$$H_{\scriptscriptstyle \mathrm{T.ad}} = H_{\scriptscriptstyle \mathrm{K.ad}} \cdot \frac{G_{\scriptscriptstyle \mathrm{B}}}{G_r \cdot \eta_{\scriptscriptstyle \mathrm{TK}}}$$
, Дж.

3. Относительный адиабатический перепад температур в турбине

$$\Delta \bar{t}_{\scriptscriptstyle \mathrm{T.AJL}} = \frac{H_{\scriptscriptstyle \mathrm{T.AJL}}}{\frac{k_1}{k_1-1} R_{\Gamma} \cdot T_r} \,,$$

где k_1 – показатель адиабаты для газов, k_1 = 1,33;

 R_{Γ} – газовая постоянная выпускных газов, $R_{\Gamma} \cong R_{\rm B}$.

4. Температура газов на выходе из турбины

$$T_{\mathrm{T}} = T_r \left(1 - \Delta \bar{t}_{\mathrm{T,all}} \right)$$
, K.

5. Степень расширения газов в турбине

$$\pi_{\mathrm{T}} = \left(\frac{1}{1 - \Delta \bar{t}_{\mathrm{T.a,H}}}\right)^{\frac{k_{1}}{k_{1} - 1}}.$$

6. Давление газов перед турбиной

$$P_{\rm T} = (P_0 + \Delta P_{\rm BM\Pi}) \cdot \pi_{\rm T}$$
, M Π a.

7. Плотность газов перед турбиной

$$\rho_{\rm T} = 10^6 \cdot \frac{P_{\rm T}}{T_r \cdot R_{\rm F}}, \, \kappa \Gamma/M^3.$$

8. Окружная скорость колеса турбины

$$U_{\rm T} = U_{\rm K} \cdot \frac{D_2}{D_{\rm T}}$$
, m/c.

9. Теоретическая скорость газов

$$C_0 = \sqrt{2H_{\text{т.ад}}}$$
, м/с.

10. Относительная величина окружной скорости

$$x = \frac{U_{\mathrm{T}}}{C_0}.$$

Для турбин автотракторных двигателей x = 0.65-0.68.

11. Плотность газов на выходе из турбины

$$\rho_{\rm T} = 10^6 \cdot \frac{p_0 + \Delta p_{\rm BMII}}{T_{\rm T} \cdot R_{\rm \Gamma}}, \, {\rm K} {\rm \Gamma}/{\rm M}^3.$$

12. Степень реактивности турбины

$$\rho = 1 - \left(\frac{\eta_u}{2 \cdot x \cdot \varphi \cdot \cos \alpha_1}\right)^2,$$

где α_1 — угол абсолютной скорости потока на входе в колесо, $\alpha_1 = 20^\circ.$

Для центростремительных турбин степень реактивности лежит в пределах $\rho = 0.45 - 0.55$.

13. Адиабатический напор, срабатываемый в безлопаточном направляющем аппарате турбины:

$$H_{\text{н.а.ад}} = H_{\text{т.ад}}(1-\rho), Дж.$$

14. Скорость газов на выходе из безлопаточного направляющего аппарата

$$C_1 = \phi \sqrt{2H_{\text{н.а.ад}}}$$
, м/с.

15. Наружный диаметр щелевого конфузора

$$D_{\text{III},K} = D_{\text{T}} \left(1 + 2\overline{r}_{\text{III},K} \right), \text{ MM}.$$

16. Скорость газов на входе в щелевой конфузор

$$C_1' = \frac{C_1 \cdot D_{\mathrm{T}}}{D_{\mathrm{HILK}}}$$
, m/c.

17. Радиальная составляющая скорости газов на входе в щелевой конфузор

$$C'_{1r} = C'_1 \cdot \sin \alpha_1$$
, m/c.

18. Окружная составляющая скорости газов на входе в щелевой конфузор

$$C'_{1u} = C'_1 \cdot \cos \alpha_1$$
, m/c.

19. Адиабатический напор, срабатываемый в улитке безлопаточного направляющего аппарата

$$H_{ ext{y.ад}} = \left(\frac{C_1'}{C_1}\right)^2 \cdot H_{ ext{Ha.aд.}}, \, Дж.$$

20. Температура газов на выходе улитки безлопаточного направляющего аппарата при адиабатическом расширении

$$T_{\text{y.ad}} = T_r - \frac{H_{\text{y.ad}}}{\frac{k_1}{k_1 - 1} R_{\Gamma}}, \text{ K.}$$

21. Давление газов на выходе улитки безлопаточного направляющего аппарата

$$P_{y} = P_{T} \left(\frac{T_{y.a_{\pi}}}{T_{r}} \right)^{\frac{k_{1}}{k_{1}-1}}, M\Pi a.$$

22. Действительная температура газов на выходе из улитки безлопаточного направляющего аппарата

$$T_{y} = T_{r} - \frac{\varphi^{2} \cdot H_{y.a.}}{\frac{k_{1}}{k_{1} - 1} R_{\Gamma}}, \text{ K.}$$

23. Плотность газов на выходе из улитки безлопаточного направляющего аппарата

$$\rho_{\rm y} = 10^6 \cdot \frac{P_{\rm y}}{T_{\rm y} \cdot R_{\rm r}}, \ {\rm kg/m}^3.$$

24. Площадь сечения улитки на выходе из нее

$$F_{y0} = 10^4 \cdot \frac{G_{\Gamma}}{\rho_{T} \cdot C_{1}'}, \text{ cm}^2.$$

Величина F_{v0} лежит в пределах 9–20 см².

25. Ширина щелевого конфузора

$$b_{\text{III.K}} = 3.184 \cdot 10^5 \cdot \frac{G_{\Gamma}}{\rho_{\text{y}} \cdot C'_{1r} \cdot D_{\text{T}}}, \text{ MM}.$$

26. Высота лопатки колеса турбины на входе

$$h_{\text{JI.T}} = b_{\text{III.K}} - \Delta_{\text{III.K}}$$
, MM,

где $\Delta_{\text{ш.к}}$ – разность между шириной щелевого конфузора и высотой лопатки, $\Delta_{\text{ш.к}} = 0.5$ мм.

Для турбин автотракторных двигателей $h_{\pi \tau} = 7-25$ мм.

27. Диаметр колеса турбины на выходе

$$D_{2_{\mathrm{T}}} = D_{_{\mathrm{T}}} \sqrt{2 \cdot \mu^2 - \overline{D_{_{\mathrm{BT}}}^2}}$$
 , MM.

28. Осевая скорость газов на выходе из колеса

$$C_{2_{\mathrm{T}_{ax}}} = 1,274 \cdot 10^6 \cdot \frac{G_{\Gamma}}{\tau_{2_{\mathrm{T}}} \cdot \rho_r \left(D_{2_{\mathrm{T}}}^2 - \overline{D}_{\mathrm{BT}}^2 \cdot D_{\mathrm{T}}^2\right)}, \text{ m/c.}$$

29. Угол относительной скорости на выходе из колеса (на среднем диаметре)

$$\beta_{2\text{T}} = \operatorname{arctg} \left(C_{2\text{T}_{2\text{Y}}} \cdot D_{2\text{T}} / \left(U_{\text{T}} \cdot D_{\text{T}} \cdot \mu \right) \right)$$
, градус.

30. Угол лопатки на выходе из колеса

$$\beta_{2\pi,T} = \beta_{2\tau} + i$$
, градус.

31. Угол лопатки на диаметре D_{2T}

$$eta_{2_{\mathrm{T}}_{D_2}} = \mathrm{arctg}\Bigg(\mathrm{tg}_{2_{\mathrm{Л.T}}} \cdot D_{\mathrm{T}} \frac{\mu}{D_{2_{\mathrm{T}}}}\Bigg)$$
, градус.

Величины углов лопатки составляют $\beta_{2\pi.T} = 25 - 40^{\circ};$ $\beta_{2\tau_{D_2}} = 30 - 45^{\circ}.$

2.2. Гидродинамический расчет подшипника турбокомпрессора

- 1. Подготовить исходные данные расчета.
- 1.1. Подготовить расчетную схему согласно рисунку 2.2.
- 1.2. Определить или задать массы колес турбины $m_{_{\rm T}}$ и компрессора $m_{_{\rm K}}$.
- 1.3. Найти угловую скорость вращения ротора турбокомпрессора

$$\omega_{\text{\tiny T.K}} = \pi \cdot n_{\text{\tiny T.K}}/30,$$

где $n_{\text{т.к}}$ — частота вращения ротора турбокомпрессора (берется из результатов расчета компрессора).

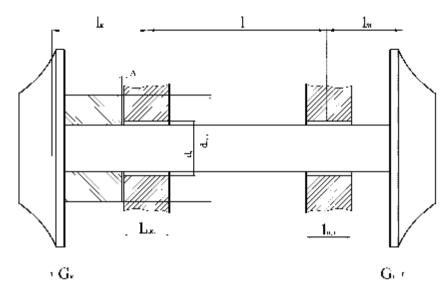


Рисунок 2.2 – Схема гидродинамического расчета подшипников турбокомпрессора

- 1.4. Задать радиальные $\delta_{_T}$ и $\delta_{_K}$ зазоры соответственно в турбинном и компрессорном подшипниках и осевой Δ зазор в упорном подшипнике.
- 1.5. Задать радиус приложения дисбаланса колес турбины и компрессора $r_{D_{\rm T}}$ и $r_{D_{\rm K}}$.
- 1.6. Выбрать величину отношения угловой скорости прецессии к угловой скорости ротора k_{ω} .
- 1.7. Используя расчетную схему определить отношения расстояний от центров тяжести колес турбины и компрессора до середин соответствующих подшипников к длине отрезка, соединяющего середины подшипников $k_{\rm T} = \frac{l_{\rm T}}{l}$ и $k_{\rm K} = \frac{l_{\rm K}}{l}$.
- 1.8. Из справочных источников определить величины коэффициента динамической вязкости масла μ , его теплоемкости $c_{\scriptscriptstyle M}$ и перепада температур Δt .

2. По приведенным ниже выражениям относительно $\chi_{_{\rm T}}$ и $\chi_{_{\rm K}}$ определить реакции в опорах подшипников.

 $\chi_{_{\rm T}}$ и $\chi_{_{\rm K}}$ – относительный эксцентриситет в турбинном и компрессорном подшипниках.

Абсолютные значения $\chi_{\scriptscriptstyle T}$ и $\chi_{\scriptscriptstyle K}$ определяются по формулам и графикам гидродинамической теории смазывания.

для турбинного подшипника
$$\chi_{\scriptscriptstyle \mathrm{T}} = \frac{e_{\scriptscriptstyle \mathrm{T}}}{\delta_{\scriptscriptstyle \mathrm{T}}},$$

для компрессорного –
$$\chi_{\kappa} = \frac{e_{\kappa}}{\delta_{\kappa}}$$
,

где $\delta_{\rm T}$ и $\delta_{\rm K}$ – радиальный зазор соответственно в турбинном и компрессорном подшипниках;

 $e_{_{
m T}}$ и $e_{_{
m K}}$ – эксцентриситет в турбинном и компрессорном подшипниках.

Значение силы R_{κ} , действующей на компрессорный подшипник, определяется из зависимости

$$\begin{split} R_{_{\rm K}} &= m_{_{\rm K}} \cdot \omega_{_{\rm T.K}}^2 \cdot \left(r_{D_{\rm K}} + k_{_{\rm C\!O}}^2 \cdot \chi_{_{\rm K}} \cdot \delta_{_{\rm K}} \cdot \left(1 + 2k_{_{\rm K}} \right) \right) \cdot \left(1 + k_{_{\rm K}} \right) + \\ &+ m_{_{\rm T}} \cdot \omega_{_{\rm T.K}}^2 \cdot \left(r_{D_{\rm T}} + k_{_{\rm C\!O}}^2 \cdot \chi_{_{\rm T}} \cdot \delta_{_{\rm T}} \cdot \left(1 + 2k_{_{\rm T}} \right) \right) \cdot k_{_{\rm T}}, \end{split}$$

Для турбинного подшипника величина силы $R_{\rm T}$ определяется из аналогичной зависимости:

$$\begin{split} R_{\scriptscriptstyle \mathrm{T}} &= m_{\scriptscriptstyle \mathrm{T}} \cdot \omega_{\scriptscriptstyle \mathrm{T.K}}^2 \cdot \left(r_{D\scriptscriptstyle \mathrm{T}} + k_{\scriptscriptstyle \Theta}^2 \cdot \chi_{\scriptscriptstyle \mathrm{T}} \cdot \delta_{\scriptscriptstyle \mathrm{T}} \cdot (1 + 2k_{\scriptscriptstyle \mathrm{T}}) \right) \cdot (1 + k_{\scriptscriptstyle \mathrm{T}}) + \\ &+ m_{\scriptscriptstyle \mathrm{K}} \cdot \omega_{\scriptscriptstyle \mathrm{T.K}}^2 \cdot \left(r_{D\scriptscriptstyle \mathrm{K}} + k_{\scriptscriptstyle \Theta}^2 \cdot \chi_{\scriptscriptstyle \mathrm{K}} \cdot \delta_{\scriptscriptstyle \mathrm{K}} \cdot (1 + 2k_{\scriptscriptstyle \mathrm{K}}) \right) \cdot k_{\scriptscriptstyle \mathrm{K}}, \end{split}$$

- 3. Задавшись краевыми значениями $\chi_{_{\rm T}}=\chi_{_{\rm K}}=0$ и $\chi_{_{\rm T}}=\chi_{_{\rm K}}=1$, определить значения сил $R_{_{\rm T}}$ и $R_{_{\rm K}}$.
- 4. Для полученных предельных значений сил $R_{\scriptscriptstyle \rm T}$ и $R_{\scriptscriptstyle \rm K}$ определяются значения коэффициентов нагруженности $\Phi_{\scriptscriptstyle \rm T}$ и $\Phi_{\scriptscriptstyle \rm K}$:

для турбинного подшипника эта величина определяется из зависимости

$$\Phi_{\mathrm{T}} = \frac{\Psi_{\mathrm{T}}^2 \cdot R_{\mathrm{T}}}{\mu \cdot \omega_{\mathrm{T.K}} \cdot l_{\mathrm{\Pi.T}} \cdot d_{\mathrm{\Pi.T}}},$$

для компрессорного подшипника используется аналогичная зависимость

$$\Phi_{K} = \frac{\Psi_{K}^{2} \cdot R_{K}}{\mu \cdot \omega_{T.K} \cdot l_{\Pi.K} \cdot d_{\Pi.K}},$$

где $\psi_{_{\rm T}}$ и $\psi_{_{\rm K}}$ – относительный радиальный зазор;

 $l_{\scriptscriptstyle \Pi, T}$ и $l_{\scriptscriptstyle \Pi, K}$ — ширина турбинного и компрессорного под-шипников соответственно;

 $d_{\text{п.т}}$ и $d_{\text{п.к}}$ – диаметр турбинного и компрессорного под-шипников соответственно;

и – коэффициент динамической вязкости масла.

5. Используя графические зависимости, представленные на рисунке 2.3, определить действительные значения относительного эксцентриситета $\chi_{\scriptscriptstyle T}$ и $\chi_{\scriptscriptstyle K}$.

Относительная длина турбинного (компрессорного) подшипника λ , необходимая для работы с этими зависимостями, определяется из выражения

$$\lambda_{\mathrm{T}(\mathrm{K})} = \frac{l_{\mathrm{\Pi.T}(\mathrm{K})}}{d_{\mathrm{\Pi.T}(\mathrm{K})}},$$

где $l_{\text{п.т(к)}}$ – длина турбинного (компрессорного) подшипника;

 $d_{\text{п.т(к)}}$ – диаметр турбинного (компрессорного) подшипника.

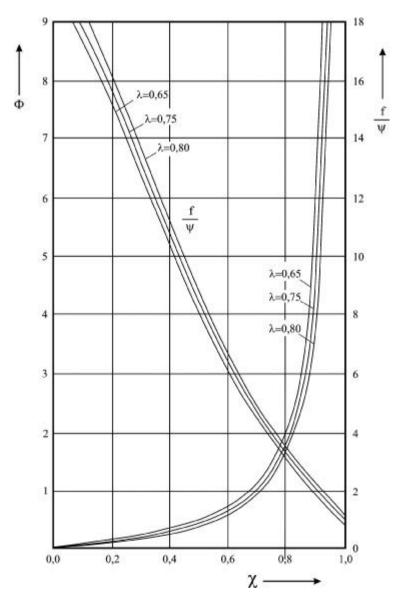


Рисунок 2.3 – Зависимости коэффициента нагруженности Φ и приведенного значения коэффициента трения f/ψ от относительного эксцентриситета χ для различных значений λ

- 6. Для найденных значений $\chi_{\rm T}$ и $\chi_{\rm K}$ рассчитать действительные величины сил $R_{\rm T}$ и $R_{\rm K}$ и коэффициентов нагруженности $\Phi_{\rm T}$ и $\Phi_{\rm K}$.
- 7. Используя графические зависимости (см. рисунок 2.3), определить приведенные значения коэффициента трения f/ψ .
- 8. Определить значение коэффициента трения в подшипниках, умножив величину f/ψ на соответствующее значение относительного зазора.
- 9. Рассчитать минимальное значение толщины масляного слоя в подшипниках. Вал ротора достаточно жесткий, и прогиб его практически отсутствует, поэтому минимальное значение толщины масляного слоя в подшипниках определяют по формулам

$$h_{\min T} = \delta_{T} \cdot (1 - \chi_{T}),$$

$$h_{\min \kappa} = \delta_{\kappa} \cdot (1 - \chi_{\kappa}).$$

- 10. По найденным значениям $\chi_{\rm T}$ и $\chi_{\rm K}$ с помощью зависимостей определяют значение коэффициента трения f/ψ в обоих подшипниках.
- 11. Потери на трение в опорном подшипнике определяются из выражения:

$$M_{\text{TD.OII}} = f \cdot r \cdot R$$
,

где f – коэффициент трения в подшипнике;

r – радиус вала ротора;

R – сила, действующая на подшипник.

Коэффициент трения в подшипнике определяется с помощью отношения f/ψ , абсолютное значение которого определено выше.

12. Для упорного подшипника мощность потерь на трение рассчитывается по формуле

$$N_{\rm Tp.ym} = \frac{r_{\rm cp} \cdot \cdot \cdot F \cdot U_{\rm cp}^2}{\Delta},$$

где $r_{\rm cp}$ – средний радиус упорного подшипника;

F – площадь упорного подшипника;

 $U_{
m cp}\,$ – окружная скорость на среднем диаметре упорного подшипника;

 Δ – осевой зазор в упорном подшипнике.

Средний радиус упорного подшипника определятся из выражения

$$r_{\rm cp} = \frac{d_{\rm yn.H} + d_{\rm n}}{\Delta},$$

где $d_{\text{уп.н}}$ – наружный диаметр упорного подшипника;

 $d_{\scriptscriptstyle \Pi}$ – диаметр упорного подшипника.

Площадь упорного подшипника равна площади кольца, ограниченного двумя окружностями диаметров $d_{\rm yn.H}$ и $d_{\rm n}$. Данная величина определяется из выражения

$$F = \pi \frac{d_{\text{уп.H}}^2 + d_{\Pi}^2}{4}$$
.

Окружная скорость на среднем диаметре упорного подшипника рассчитывается по формуле

$$U_{\rm cp} = \frac{\pi \cdot n_{\rm T.K} \cdot r_{\rm cp}}{30}.$$

13. Определить суммарную мощность потерь на трение, сложив полученные в пунктах 11 и 12 величины:

$$N_{\Sigma} = N_{\text{тр.уп}} + N_{\text{тр.оп.т}} + N_{\text{тр.оп.к}} \; . \label{eq:Nsigma}$$

14. Определить циркуляционный расход масла через турбокомпрессор. Для отвода теплоты, производимой силами трения, используется смазочное масло. Расход масла через подшипники рассчитывается по выражению

$$G_{\rm M} = \frac{N_{\Sigma}}{c_{\rm M} \cdot \Delta t},$$

где $c_{\rm M}$ – теплоемкость масла;

 Δt — перепад температур на входе и выходе из подшипника.

Справочные данные

Массы колес:

- турбины 0,2-0,5 кг;
- компрессора 0,04-0,2 кг.

Радиус приложения дисбаланса, отнесенного к массе колес:

- турбины $-0,1-0,3\cdot10^{-5}$ м/кг;
- компрессора $-0.3-0.9\cdot10^{-5}$ м/кг.

Радиальный зазор $\delta - 1 - 2 \cdot 10^{-5}$ м;

Осевой зазор в обоих колесах $\delta - 3 - 4.10^{-5}$ м;

Коэффициент динамической вязкости – $0.8-1.2\cdot10^{-6}$;

Отношение угловой скорости прецессии к угловой скорости ротора k_{∞} – 0,35–0,45;

Перепад температур на входе и выходе из подшипника $\Delta t - 20$ – 25° .

Теплоемкость масла $c_{\rm M}$ – 2–2,2 кДж/(кг·К).

3. ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ОХЛАДИТЕЛЯ НАДДУВОЧНОГО ВОЗДУХА

Исходные данные

- 1. Расход наддувочного воздуха $G_{\rm B}$.
- 2. Температура наддувочного воздуха $T_{\rm K}$.

Если пренебречь теплообменом в подводящем патрубке, то величина $T_{\rm K}$ будет равна температуре на выходе из компрессора.

- 3. Температура воздуха после охладителя T_S . Значение этого параметра определяется техническими условиями на двигатель.
- 4. Выбор конструктивного исполнения поверхности охлаждения. Каждому исполнению соответствуют:
- эквивалентный диаметр трубки по горячему теплоносителю $d_{3,\Gamma}$;
 - коэффициент оребрения ψ;
 - коэффициент объемной компактности ф;
 - расстояние между осями смежных трубок S_1 ;
 - расстояние между смежными пластинами (ребрами) S_4 .

Для выбранной поверхности охлаждения определить живое сечение трубки для прохода наддувочного воздуха:

$$f_{\mathrm{\textsc{k.c.tp}}} = \frac{d_{\scriptscriptstyle \mathfrak{I}.\Gamma} \cdot P_{\scriptscriptstyle \Gamma}}{4}$$
 , MM,

где $P_{\rm r}$ – периметр внутреннего контура трубки.

Для схемы, показанной на рисунке 3.1, периметр внутреннего контура трубки определяется по зависимости

$$P_{\Gamma} = 2 \cdot (S_2 - 2\delta_{T}) + (\pi - 2) \cdot d$$
, MM,

где $\delta_{\scriptscriptstyle T}$ – толщина стенки трубки, мм.

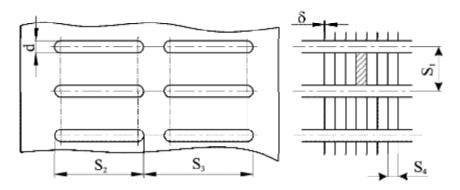


Рисунок 3.1 – Схема расположения трубок охладителя наддувочного воздуха

Рассчитать площадь живого сечения канала для прохода охладителя и его эквивалентный диаметр (см. рисунок 3.1, заштрихованная область).

Площадь живого сечения

$$f_{\text{m.x}} = (S_1 - d - \delta_{\text{T}}) \cdot (S_4 - \delta), \text{ m}^2.$$

Эквивалентный диаметр определяется из выражения

$$d_{9.X} = \frac{4 \cdot f_{\text{ж.x}}}{2 \cdot (S_1 + S_4 - d - \delta_{\text{T}} - \delta)}, \text{ MM}.$$

Выбираются габаритные размеры сердцевины охладителя наддувочного воздуха (рисунок 3.2): высота H, ширина L, глубина t.

Размеры устанавливаются из компоновочных соображений, связанных с размещением охладителя на транспортном средстве с учетом взаимодействия с агрегатами системы охлаждения двигателя.

Как правило, теплообменник устанавливается перед радиатором системы охлаждения, поэтому размеры его остова принимаются равными размерам остова радиатора системы охлаждения.

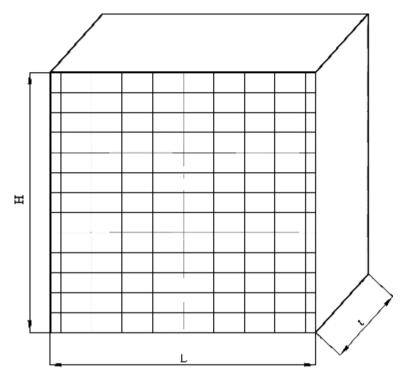


Рисунок 3.2 – Схема охладителя наддувочного воздуха

Окончательно определяются размеры охладителя итерацией на основании результатов предварительного расчета. Оценка ведет по величине коэффициента теплопередачи.

Поверхность охлаждения

$$F_{\rm X} = \mathbf{\phi} \cdot L \cdot H \cdot t$$
, m².

Живая поверхность охлаждения горячего воздуха:

$$F_{\text{ж.г}} = f_{\text{ж.д.тр}} \cdot n_1 \cdot n_2 \cdot 10^{-6}, \text{ m}^2.$$

где n_1 – количество трубок в ряду;

 n_2 – количество рядов.

Количество трубок в ряду n_1 определяется исходя из выбранной ширины радиатора L и конструктивного исполнения охлаждающего элемента:

$$n_1 = \frac{L}{S_1}.$$

Количество рядов определяется величиной S_3 и глубиной t:

$$n_2 = \frac{t}{S_3}.$$

Живое сечение по холодному теплоносителю

$$F_{\text{\tiny M.X}} = H \cdot L - n_1 \cdot d \cdot H - \delta \cdot L \cdot n_{\text{\tiny HJ}} + \delta \cdot d \cdot n_{\text{\tiny HJ}} \cdot n_1, \text{ M}^2.$$

где $n_{\text{пл}}$ — число пластинок:

$$n_{\text{\tiny IIJI}} = \frac{H}{S_4 + \delta} \,.$$

Средняя температура по горячему теплоносителю

$$\bar{T}_{\Gamma} = 0.5(T_{S} + T_{K}), \text{ K}.$$

Средняя температура холодного воздуха

$$\bar{T}_{x} = (T_0 + \frac{\Delta T_x}{2}), \text{ K},$$

где T_0 – температура охладителя. Для воздухо-воздушных охладителей она равна температуре окружающей среды;

 $\Delta T_{\rm x}$ – перепад температур на ребрах радиатора, $\Delta T_{\rm x} = 4{\rm -}8~{\rm m}.$

Средние плотности наддувочного и охлаждающего воздуха

$$\rho_{\Gamma} = \frac{10^6 \cdot (P_4 + P_s)}{R_b \cdot (T_s + T_{\kappa})}, \frac{\kappa \Gamma}{M^3},$$

$$\rho_{\rm X} = \frac{10^6 \cdot P_{\rm o}}{\overline{T}_{\rm X} \cdot R_{\rm B}}, \frac{\rm K\Gamma}{\rm M}^3,$$

где P_4 – давление воздуха на выходе из компрессора;

 P_{S} – давление после охладителя;

 P_0 – давление окружающей среды.

Динамическая вязкость горячего и холодного теплоносителей

$$\mu_{\Gamma} = \mu_0 \cdot \frac{273 + C_1}{\bar{T}_{\Gamma} + C_1} \cdot \left(\frac{\bar{T}_{\Gamma}}{273}\right)^{1,5}, \frac{\kappa \Gamma}{\mathbf{M} \cdot \mathbf{c}},$$

$$\mu_{\rm x} = \mu_0 \cdot \frac{273 + C_1}{\bar{T}_{\rm x} + C_1} \cdot \left(\frac{\bar{T}_{\rm x}}{273}\right)^{1,5}, \frac{\rm K\Gamma}{\rm M \cdot c},$$

где μ_0 — динамическая вязкость воздуха, $\mu_0=1,713\cdot 10^{-5}$ кг/м·е; C_1 — константа, $C_1=114$.

Кинематическая вязкость горячего и холодного теплоносителей

$$v_{\Gamma} = \frac{\mu_{\Gamma}}{\rho_{\Gamma}}, \frac{M^2}{c}; \qquad v_{X} = \frac{\mu_{X}}{\rho_{X}}, \frac{M^2}{c}.$$

Теплоемкость наддувочного и охлаждающего воздуха

$$C_{P_{\Gamma}} = 0.998 + 9.07 \cdot 10^{-4} \cdot \bar{T}_{\Gamma}, \frac{\kappa \text{ m/m}}{\kappa \text{ m} \cdot \text{ m}},$$

$$C_{P_{x}} = 0.998 + 9.07 \cdot 10^{-4} \cdot \bar{T}_{x}, \frac{\text{K} \mu}{\text{K} \Gamma \cdot \text{K}},$$

Теплопроводность наддувочного и охлаждающего воздуха

$$\lambda_{\Gamma} = \lambda_0 \left(\frac{273 + C_2}{\bar{T}_{\Gamma} + C_2} \right) \cdot \left(\frac{\bar{T}_{\Gamma}}{273} \right) \frac{\text{BT}}{\text{M} \cdot \text{K}},$$

$$\lambda_{\rm x} = \lambda_0 \left(\frac{273 + C_2}{\bar{T}_{\rm x} + C_2} \right) \cdot \left(\frac{\bar{T}_{\rm x}}{273} \right) \frac{\rm B_T}{\rm m \cdot K},$$

где λ_0 — теплопроводность для воздуха, $\lambda_0=2,44\cdot 10^{-2}$ Вт/м·К C_2 — константа, $C_2=125$.

Количество теплоты, отводимой от горячего теплоносителя:

$$Q_{\Gamma} = G_{\rm B} \cdot C_{P_{\Gamma}} \cdot \Delta T_{\Gamma} \cdot 10^3$$
, Bt,

где ΔT_{Γ} – перепад температур по горячему теплоносителю:

$$\Delta T_{\Gamma} = T_4 - T_s.$$

Начальный температурный напор

$$\Delta T_{\rm H} = T_4 - T_0 \,.$$

Среднелогарифмический температурный напор

$$\Delta T_{\text{II}} = \frac{\Delta T_{\text{\Gamma}} - \Delta T_{\text{X}}}{\ln \frac{\Delta T_{\text{H}} - \Delta T_{\text{X}}}{\Delta T_{\text{H}} - \Delta T_{\text{\Gamma}}}}, \text{ K.}$$

Требуемое значение коэффициента теплопередачи

$$k = \frac{Q_{\Gamma}}{\Delta T_{\Pi} \cdot F_{X}}, \frac{BT}{M^{2} \cdot K}$$

Скорости горячего и холодного теплоносителей

$$w_{\Gamma} = \frac{G_{\rm B}}{F_{\rm M.\Gamma} \cdot \rho_{\Gamma}}, \ {\rm M/c},$$

$$w_{\rm x} = \frac{G_{\rm B} \cdot C_{P_{\rm r}} \cdot \Delta T_{\rm r}}{F_{\rm x.x} \cdot \rho_{\rm x} \cdot C_{P_{\rm x}} \cdot \Delta T_{\rm x}}, \, \text{m/c}.$$

Число Рейнольдса для горячего и холодного теплоносителей

$$Re_{\Gamma} = \frac{w_{\Gamma} \cdot d_{9}}{v_{\Gamma}} ,$$

$$\operatorname{Re}_{\mathbf{x}} = \frac{w_{\mathbf{x}} \cdot d_{\mathbf{3}\mathbf{x}}}{\mathsf{v}_{\mathbf{x}}}.$$

Число Нуссельта для горячего и холодного теплоносителей рассчитывается по зависимостям:

– для коридорного расположения трубок:

$$Nu_{\Gamma} = 0.165 \cdot Re_{\Gamma}^{0.58}$$

$$Nu_x = 0.165 \cdot Re_x^{0.58};$$

– для шахматного расположения трубок:

$$Nu_{\Gamma} = 0.37 \cdot Re_{\Gamma}^{0.6}$$
, $Nu_{X} = 0.37 \cdot Re_{X}^{0.6}$.

Коэффициент теплоотдачи по горячему и холодному теплоносителям

$$\alpha_{\Gamma} = \frac{Nu_{\Gamma} \cdot \lambda_{\Gamma}}{d_{\gamma}}, \ \frac{B_{T}}{M^{2} \cdot K}, \qquad \alpha_{X} = \frac{Nu_{X} \cdot \lambda_{X}}{d_{\gamma K}}, \ \frac{B_{T}}{M^{2} \cdot K}.$$

Значение коэффициента теплопередачи

$$k' = \frac{1}{\frac{1}{\alpha_{\rm r}} \cdot \psi + \frac{1}{\alpha_{\rm x} \cdot \eta_{\rm B} \cdot \theta}}, \frac{\rm BT}{{\rm m}^2 \cdot {\rm K}},$$

где ψ – коэффициент оребрения;

 $\eta_{\rm B}$ – коэффициент омывания радиатора, $\eta_{\rm B} = 0.5 - 0.7$;

 θ — коэффициент, учитывающий тепловое сопротивление мест соединения трубок с пластинами, θ = 0,3–0,6.

Полученное значение k' сравнивается с требуемым значением k:

$$\varepsilon = \frac{k - k'}{k}.$$

Допустимое отклонение расчетной величины ϵ не должно превышать 5 %.

Полученные габаритные размеры и принятый (заданный) тип поверхности охлаждения используются при выполнении чертежа охладителя наддувочного воздуха.

4. ПРОФИЛИРОВАНИЕ ЛОПАТОК КОЛЕС ТУРБИНЫ И КОМПРЕССОРА

Профилирование лопаток (рисунок 4.1) и выбор основных геометрических параметров их решеток сводится к обеспечению изменения параметров в соответствии с результатами газодинамического расчета турбины и получению минимальных потерь ступени. Вместе с тем выбранные профили рабочих лопаток также должны максимально удовлетворять требованиям прочности и простоты изготовления. Высокая эффективность работы межлопаточного канала может быть достигнута лишь при условии безотрывного обтекания лопаток, которое обеспечивается, прежде всего, отсутствием диффузионных участков и равномерным сужением каналов по всей длине. Кроме того, необходимо стремиться к тому, чтобы кривизна вогнутой и, особенно, выпуклой поверхности плавно уменьшалась от входной кромки к выходной. Для обеспечения высоких требований к вибропрочности предпочтителен серповидный профиль, особенно это важно при линейных скоростях на диаметре D_2 , превышающих 300 м/с.

Условия для расчета лопатки следующие (рисунок 4.2):

$$R \cdot tg\beta = const$$
, (4.1)

$$y = k \cdot x^n, \tag{4.2}$$

где
$$n = \frac{x_0}{y \cdot \text{tg}\beta}$$
,

$$\begin{cases} y = a_1 x + b_2, \\ y = a_2 x + b_2, \end{cases} \quad \operatorname{arctg}\left(\frac{a_2 - a_1}{1 + a_1 \cdot a_2}\right) = \gamma.$$

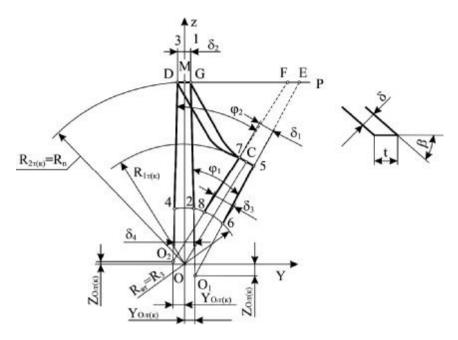


Рисунок 4.1 – Схема колеса турбокомпрессора

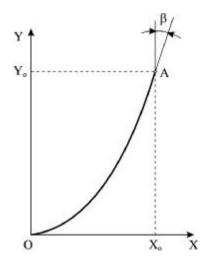


Рисунок 4.2 – Парабола – направляющая профиля лопатки колес турбокомпрессора

Определяются основные параметры:

$$t_1 = \frac{\delta_1}{\sin \beta_1}, \text{ MM}, \qquad (4.3)$$

$$t_3 = \frac{\delta_3}{\operatorname{tg}\beta_1}, \, \text{MM} \,, \tag{4.4}$$

где t_1 и t_3 — проекции толщины лопатки у вершины и основания на плоскость соответственно;

 β_1 — величина, равная углу на выходе из колеса для турбины и на входе в компрессоре.

Промежуточные расчетные углы, необходимые для определения значений координат точек профиля лопатки:

$$\angle CO7 = \theta_1 = \arcsin\left(\frac{t_1}{2 \cdot R_{\text{BT}}}\right),$$

$$\angle CO8 = \theta_2 = \arcsin\left(\frac{t_3}{2 \cdot R_{\text{lr(k)}}}\right),$$

где $R_{
m lt(\kappa)}$ – радиус колеса турбины (компрессора) на выходе; $R_{
m BT}$ – радиус втулки.

$$\angle MO8 = \frac{360}{m} - \theta_2 + \chi,$$

где m — число лопаток колеса турбины (компрессора); χ — угол нахлеста.

Нахлест – это перекрытие средних линий профилей смежных лопаток колес турбокомпрессора. Величина χ может принимать как положительные значения, так и отрицательные, а также быть равной нулю. На рисунке 4.3 показаны профили колес с различной величиной нахлеста.

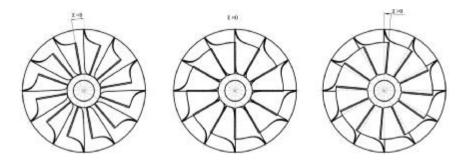


Рисунок 4.3 – Профили колес с различным нахлестом

Другие значения центральных углов

$$\angle MO7 = \frac{360}{m} - \theta_1 + \chi,$$

$$\angle MO6 = \frac{360}{m} + \theta_2 + \chi,$$

$$\angle MO5 = \frac{360}{m} + \theta_1 + \chi.$$

Определить координаты точек 1–8, задающих положение проекции профиля лопатки на плоскость ZOY (см. рисунок 4.1):

$$\begin{aligned} \text{T.1:} \ \ y_1 &= 0, 5 \cdot \delta_2 \text{ , mm,} \\ \text{T.2:} \ \ y_2 &= 0, 5 \cdot \delta_4 \text{ , mm,} \end{aligned} \qquad \qquad z_1 = \sqrt{R_{\text{2T(K)}}^2 - y_1^2} \text{ , mm;} \\ z_2 &= \sqrt{R_{\text{BT}}^2 - y_2^2} \text{ , mm;} \end{aligned}$$

T.3:
$$y_3 = -y_1$$
, MM, $z_3 = z_1$, MM; $z_4 = -y_2$, MM, $z_4 = z_2$, MM; T.5: $y_5 = R_{\text{lt}(K)} \cdot \sin \angle MO5$, MM, $z_5 = R_{\text{lt}(K)} \cdot \cos \angle MO5$, MM; T.6: $y_6 = R_{\text{BT}} \cdot \sin \angle MO6$, MM, $z_6 = R_{\text{BT}} \cdot \cos \angle MO6$, MM; T.7: $y_7 = R_{\text{lt}(K)} \cdot \sin \angle MO7$, MM, $z_7 = R_{\text{lt}(K)} \cdot \cos \angle MO7$, MM; T.8: $y_8 = R_{\text{RT}} \cdot \sin \angle MO8$, MM, $z_8 = R_{\text{RT}} \cdot \cos \angle MO8$, MM.

Для определения координат точек O_1 и O_2 – первого и второго технологических центров – необходимо определить уравнения прямых, при пересечении которых получаются данные точки. Для этого нужно найти коэффициенты a_i и b_i соответствующих прямых:

$$\Pi.1: \ a_1 = \frac{z_2 - z_1}{y_2 - y_1}, \qquad b_1 = z_1 - a_1 \cdot y_1;$$

$$\Pi.2: \ a_2 = \frac{z_4 - z_3}{y_4 - y_3}, \qquad b_2 = z_3 - a_2 \cdot y_3;$$

$$\Pi.3: \ a_3 = \frac{z_6 - z_5}{y_6 - y_5}, \qquad b_3 = z_5 - a_3 \cdot y_5;$$

$$\Pi.4: \ a_4 = \frac{z_8 - z_7}{y_8 - y_7}, \qquad b_4 = z_7 - a_4 \cdot y_7.$$

Принимая во внимание то, что искомые точки O_1 и O_2 являются следствием пересечения соответствующих прямых, определяем их пространственные координаты (условие пересечения $a_1 \cdot y_{O_1} + b_1 = a_3 \cdot y_{O_1} + b_3$ и т.д.).

Координаты технологических центров плоскости ZOY:

корыто
$$y_{O_1} = (b_3 - b_1)/(a_1 - a_3);$$

$$z_{O_1} = (a_1 \cdot b_3 - a_3 \cdot b_1)/(a_1 - a_3);$$

спинка
$$\begin{aligned} y_{O_2} &= (b_4 - b_2)/(a_2 - a_4); \\ z_{O_2} &= (a_2 \cdot b_4 - a_4 \cdot b_2)/(a_2 - a_4); \end{aligned}$$

Углы развертки профилей в плоскости ZOY:

корыто
$$\varphi_1 = \operatorname{arctg}((a_1 - a_3)/(1 + a_1 \cdot a_3));$$

спинка $\varphi_2 = \operatorname{arctg}((a_2 - a_4)/(1 + a_2 \cdot a_4));$

Для колес с серповидным профилем дополнительно определяются углы развертки спинки и корыта на прямом участке $h_{\pi.T(\kappa)}$. Поверхность профиля (спинки, корыта) может очерчиваться двумя ветвями одной параболы (рисунок 4.4). Значение координаты Y точек N или L в плоскости P для профилей спинки и корыта определяется зависимостью (6.2). Величина координаты X для обоих профилей равна $h_{\pi.T(\kappa)}$.

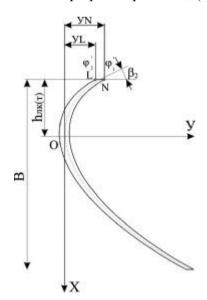


Рисунок 4.4 – Образующая серповидного профиля колес турбокомпрессора

Тангенсы углов наклона прямых, проходящих через технологические центры и точки N и L, расположенные в плоскости P на расстоянии YN или YL, отсчитанном вдоль оси OY от начала координат (рисунок 6.5), определяются уравнениями:

$$a_{3} = \frac{P - z_{O_{1}}}{y_{\kappa} - y_{O_{1}}}, \qquad a_{4} = \frac{P - z_{O_{2}}}{y_{c} - y_{O_{2}}}.$$

Рисунок 4.5 – Расчетная схема участка серповидного профиля

Углы развертки на прямом участке серповидного профиля лопатки для корыта и спинки определяются по уравнениям:

корыто
$$\alpha_1 = \arctan((a_1 - a_3')/(1 + a_1 \cdot a_4'));$$
 (4.5)

спинка
$$\alpha_2 = \arctan((a_2 - a_4')/(1 + a_2 \cdot a_4'));$$
 (4.6)

Значения углов развертки профилей корыта α_1 и спинки α_2 могут быть рассчитаны, если задан угол развертки средней линии профиля γ .

Величины углов, необходимые для определения значений координат точек профиля лопатки

$$\angle CO7' = \theta_1 = \arcsin\left(\frac{d_1}{2 \cdot R_{2T(K)}}\right),$$

$$\angle CO8' = \theta_2 = \arcsin\left(\frac{d_3}{2 \cdot R_{\text{BT}}}\right),$$

где $R_{2\text{\tiny T}(\kappa)}$ – радиус колеса турбины (компрессора) на выходе;

 $R_{\rm BT}$ — радиус втулки;

 d_1 и d_3 – проекции толщины лопатки у вершины и основания на плоскость соответственно.

Проекции толщин лопатки в характерных точках определяются по зависимостям аналогичным (6.2) и (6.3).

$$d_1 = \frac{\delta_1}{\sin\beta_2}$$
, mm; $d_3 = \frac{\delta_3}{\operatorname{tg}\beta_2}$, mm.

Величина угла β_2 определяется из выражения:

$$\beta_2 = \operatorname{arctg}(k \cdot n \cdot h_{\pi.T(K)}^{n-1}),$$

где n — показатель степени параболы средней линии (см. рисунок 4.4);

k – коэффициент в уравнении параболы.

Для определения показателя степени параболы используется зависимость

$$n = \frac{h_{\text{JI.T}(K)}}{\sin \gamma \cdot \text{tg}\beta_1 \cdot R_{\text{IT}(K)}}.$$

Коэффициент в уравнении параболы рассчитывают по формуле

$$k = \frac{R_{2\text{T}(K)}}{\left(h_{\text{JI.T}(K)}\right)^n}.$$

Значения центральных углов

$$\angle MO8' = \gamma - \theta_2,$$

 $\angle MO7' = \gamma - \theta_1,$
 $\angle MO6' = \gamma + \theta_2,$
 $\angle MO5' = \gamma + \theta_1.$

Определим координаты точек 5'-8' задающих положение проекции профиля прямого участка лопатки на плоскость ZOY (см. рисунок 4.5):

T.5':
$$y_{5'} = R_{2T(K)} \cdot \sin \angle MO5'$$
, mm, $z_{5'} = R_{2T(K)} \cdot \cos \angle MO5'$, mm;
T.6': $y_{6'} = R_{BT} \cdot \sin \angle MO6'$, mm, $z_{6'} = R_{RT} \cdot \cos \angle MO6'$, mm;

T.7':
$$y_{7'} = R_{2T(K)} \cdot \sin \angle MO7'$$
, mm, $z_{7'} = R_{2T(K)} \cdot \cos \angle MO7'$, mm;
T.8': $y_{8'} = R_{BT} \cdot \sin \angle MO8'$, mm, $z_{8'} = R_{BT} \cdot \cos \angle MO8'$, mm.

Для определения углов развертки профиля прямого участка лопатки необходимо рассчитать тангенсы углов наклона прямых 5'-6' и 7'-8':

$$\Pi.3: \ a_3' = \frac{z_{6'} - z_{5'}}{y_{6'} - y_{5'}},$$

$$\Pi.4: a_4' = \frac{z_{8'} - z_{7'}}{y_{8'} - y_{7'}}.$$

Углы развертки рассчитываются по зависимостям (4.5 и 4.6).

Расчет профиля корыта

Пересечение прямых 5–6, 1–2 с плоскостью P

$$y_E = (P - b_3)/a_3;$$

 $y_G = (P - b_1)/a_1.$

Протяженность параболы корыта в плоскости P

$$y_{EG} = y_E - y_G.$$

Расстояние до точки E

$$OE = \sqrt{y_E^2 + P^2} \ .$$

Тангенс угла закрутки в направляющей плоскости

$$T_E = \operatorname{tg}\beta_E = R \cdot \operatorname{tg}\beta / OE$$
.

Показатель параболы

$$n_{\rm K} = (B - f)/(y_E \cdot T_E).$$

Коэффициент параболы

$$k_{\rm K} = y_E / (B - f)^{n_{\rm K}}.$$

Спрофилированный угол поверхности

$$\phi_{i\kappa} = i \cdot \Delta \varphi, \quad \text{где } i = 0; 1; 2...(\varphi_1 / \Delta \varphi + 1).$$
(4.7)

Тангенс полного угла

$$\xi_{ik} = tg(arctga_3 + \varphi_{ik}).$$

Координата пересечения с направляющей плоскостью

$$y_{iK} = (P - z_{O_1} + \xi_{iK} \cdot y_{O_1}) / \xi_{iK}$$
.

Текущая координата параболы

$$x_{iK} = (y_{iK} - y_G / k_K)^{1/n_K}$$
.

Глубина технологического реза

$$h_1 = B - f - x_{iK}.$$

Критерий повторения до $\phi_{i\kappa} = \phi_1$.

При проектировании серповидной лопатки с продолженным профилем показатель степени $n_{\rm K}$ и коэффициент $k_{\rm K}$ остаются неизменными. В этом случае спрофилированный угол поверхности, как и в случае (4.7), задается зависимостью

$$\varphi'_{i\kappa} = i \cdot \Delta \varphi$$
, где $i = 0; 1; 2...(\varphi_1 / \Delta \varphi + 1)$.

Тангенс полного угла

$$\xi'_{iK} = tg(arctga'_3 + \varphi'_{iK}).$$

Координата пересечения с направляющей плоскостью

$$y'_{iK} = (P - z_{O_1} + \xi_{iK} \cdot y_{O_1}) / \xi_{iK}.$$
 (4.8)

Текущая координата параболы

$$x'_{i_{K}} = (y_{i_{K}} - y_{G} / k_{K})^{1/n_{K}}. \tag{4.9}$$

Критерий повторения до $\phi'_{i\kappa} = \alpha_1$.

В случае задания угла развертки средней линии профиля лопатки γ определению подлежат параметры параболы — показатель степени и константа. Для этого используются зависимости (4.1 и 4.2).

Тангенс угла закрутки в направляющей плоскости на радиусе $R_{\mathrm{2T(k)}}$

$$T_{R_2} = \operatorname{tg}\beta_{R_2} = R \cdot \operatorname{tg}\beta / R_{2T(K)}.$$

Показатель параболы

$$n_{\mathrm{K}}' = h_{\mathrm{JI.T}(\mathrm{K})}/(y_N \cdot T_E).$$

Коэффициент параболы

$$k_{\kappa}' = y_N / h_{\pi, \mathrm{T}(\kappa)}^{n_{\kappa}'}.$$

Координаты $y'_{i\kappa}$ и $x'_{i\kappa}$ определяются по зависимостям (4.8) и (4.9) с учетом найденных значений показателя параболы n'_{κ} и ее коэффициента k'_{κ} .

Расчет профиля спинки

Пересечение прямых 7–8, 3–4 (см. рисунок 4.1) с плоскостью P

$$y_F = (P - b_4)/a_{4};$$

 $y_D = (P - b_2)/a_2.$

Протяженность параболы спинки в плоскости P

$$y_{DF} = y_F - y_D.$$

Расстояние до точки D

$$OF = \sqrt{y_F^2 + P^2} \; .$$

Тангенс угла закрутки в направляющей плоскости

$$T_F = \operatorname{tg}\beta_F = R \cdot \operatorname{tg}\beta / OF$$
.

Показатель параболы

$$n_{\rm c} = (B - f)/(y_F \cdot T_F).$$

Коэффициент параболы

$$k_{\rm c} = y_F / (B - f)^{n_{\rm c}}.$$

Спрофилированный угол поверхности

$$\phi_{ic} = i \cdot \Delta \varphi, \quad \text{где } i = 0; 1; 2...(\varphi_1 / \Delta \varphi + 1).$$

Тангенс полного угла

$$\xi_{ic} = tg(arctga_2 - \varphi_{ic}).$$

Координата пересечения с направляющей плоскостью

$$y_{ic} = (P - z_{O_2} + \xi_{ic} \cdot y_{O_2}) / \xi_{ic}$$
.

Текущая координата параболы спинки

$$x_{ic} = (y_{ic} - y_F / k_c)^{1/n_c}$$
.

Глубина технологического реза

$$h_2 = f + x_{ic}$$
.

Критерий повторения до $\phi_{ic} = \phi_2$.

Для серповидной лопатки с продолженным профилем показатель степени $n_{\rm c}$ и коэффициент $k_{\rm c}$ остаются неизменными. В этом случае спрофилированный угол поверхности, как и в случае (4.7), задается зависимостью

$$\phi_{ic}' = i \cdot \Delta \phi$$
, где $i = 0$; 1; 2... $(\phi_2 / \Delta \phi + 1)$.

Тангенс полного угла

$$\xi'_{ic} = tg(arctga'_4 + \varphi'_{ic}).$$

Координата пересечения с направляющей плоскостью

$$y'_{ic} = (P - z_{O_2} + \xi_{ic} \cdot y_{O_2}) / \xi_{ic}$$
.

Текущая координата параболы

$$x'_{ic} = (y_{ic} - y_D / k_c)^{1/n_c}$$
.

Критерий повторения до $\phi'_{ic} = \alpha_1$.

В случае задания угла развертки средней линии профиля лопатки γ определению подлежат параметры параболы – показатель степени и константа. Для этого используются зависимости (4.1 и 4.2).

Тангенс угла закрутки в направляющей плоскости на радиусе $R_{\mathrm{2T(K)}}$

$$T_{R_2} = \operatorname{tg}\beta_{R_2} = R \cdot \operatorname{tg}\beta / R_{2T(K)}.$$

Показатель параболы

$$n_{\rm c}' = h_{\rm m.T(K)}/(y_L \cdot T_E).$$

Коэффициент параболы

$$k_{\rm c}' = y_L / h_{\rm \tiny JI.T(K)}^{n_{\rm c}'}.$$

Координаты y'_{ic} и x'_{ic} определяются по зависимостям (4.8) и (4.9) с учетом найденных значений показателя параболы n'_{c} и ее коэффициента k'_{c} .

Текущие значения координат, по которым производится построение профиля лопатки, вычисляются с помощью программы "profil_lopatok.exe". Для работы с программой предварительно необходимо подготовить исходные данные расчета.

1	Наружный диаметр колеса D_2 , мм
2	Диаметр подрезки колеса D_1 , мм
3	Втулочный диаметр $D_{\text{вт}}$, мм
4	Высота лопатки $h_{\pi(\kappa)}$, мм
5	Толщина лопатки на диаметре D_2 , мм (0,6–1,4мм)
6	Расстояние до плоскости Р, мм
7	Количество лопаток
8	Величина нахлеста (0–20 градусов)
9	Литейные уклоны (1,5–2 градуса)
10	Угол лопатки на диаметре D_1 , градус
11	Угол между горизонталью и касательной к обводу на входе в колесо (0–10 градусов)
12	Угол между вертикалью и касательной к обводу на входе в колесо (10–15 градусов)
13	Угол развертки профиля на прямом участке (10–20 градусов)*

^{*} Задается для серповидных профилей лопаток.

5. ПОРЯДОК ПОСТРОЕНИЯ ЛОПАТОК КОЛЕС

Геометрическое построение лопаток колеса турбокомпрессора начинается с профильной проекции. В соответствии с выбранными или определенными выше параметрами (наружный диаметр колеса D_2 , диаметр подрезки колеса D_1 , втулочный диаметр $D_{\rm BT}$, высота лопатки $h_{\rm J(k)}$) строятся контуры колеса. Затем производится построение внешнего обвода. При проектировании обвода стремятся, чтобы на входе и выходе из колеса кривизна наружного обвода была близкой к нулю.

Максимальной кривизны обвод достигает в средней части, что обеспечивает необходимое изменение направления потока. Однако при проектировании колеса стремятся, чтобы и в средней части обвода его кривизна была как можно меньше. Существует значительное количество методик построения обвода колеса, наиболее часто используется методика, в которой форма обвода описывается уравнением вида

$$\overline{y} = \overline{x} \cdot (1 - 2 \cdot \overline{x}^2 + \overline{x}^3) (1 - c \cdot \sin(\pi \cdot \overline{x})) \cdot tg\alpha$$

где \overline{y} и \overline{x} – приведенные значения координат:

$$\overline{y} = \frac{y}{x_{\text{max}}}, \qquad \overline{x} = \frac{x}{x_{\text{max}}};$$

c = 0-0,1 – произвольная постоянная;

$$\alpha = 45 - 0.5(\delta_1 + \delta_2);$$

$$\delta_1 = 0 - 10^{\circ}; \ \delta_2 = 10 - 15^{\circ};$$

$$x_{\text{max}} = \frac{D_2 - D_1}{2 \cdot \sin(\alpha + \delta_1)}.$$

Полученные при расчете значения X и Y приведенные. Для получения абсолютных величин координат их приведенные значения необходимо умножить на масштабный коэффициент x_{\max} . При использовании программы "profil_lopatok.exe" получают действительные значения координат X и Y.

После построения профильной проекции выполняется построение фронтальной проекции. В качестве примера рассмотрим построение фронтальной проекции одной лопатки. Для остальных лопаток последовательность построений аналогична.

В декартовой системе координат *YOZ* строятся технологические центры (координаты технологических центров приведены в результатах расчета), являющиеся вершинами углов развертки профилей спинки и корыта лопатки.

Вокруг центра O проводятся окружности диаметрами D_1 , D_2 и $D_{\rm BT}$. Из точки пересечения окружности диаметра D_2 проводится прямая a–a, параллельная оси OY.

На прямой a—a откладывают значение координаты Yс(к) (см. результаты расчета), соответствующее либо профилю корыта, либо профилю спинки лопатки. Полученную точку соединяют с соответствующим технологическим центром. На профильной проекции откладывают значение координаты Xс(к), ось $O_n X$, совпадает с осью колеса. Началом координат является точка пересечения оси $O_n X$ и вертикали, опущенной из точки начала построения наружного обвода. Из точки на оси $O_n X$ проводится секущая плоскость (на профильной проекции это вертикаль, восстановленная из заданной точки, а на фронтальной проекции — окружность). Радиус окружности равен длине отрезка, ограниченного точкой на оси $O_n X$ и пересечением вертикали с внешним обводом.

Вокруг центра проводится дуга полученного радиуса. Пересечение дуги и луча, соединяющего соответствующий технологический центр с точкой на прямой a—a, является искомой точкой.

Последовательно проведя построение нескольких точек и соединив их плавной кривой, получают соответствующий профиль (спинки или корыта) на внешнем обводе колеса.

Для построения профилей спинки и корыта лопатки на внутреннем обводе используется описанный выше алгоритм. Отличием является величина радиуса окружности (секущей плоскости), являющейся пересечением вертикали с внутренним обводом.

ЛИТЕРАТУРА

- 1. Абрамович, Г.Н. Прикладная газовая динамика / Г.Н. Абрамович. М.: Наука, 1976. 888 с.
- 2. Карташевич, А.Н. Наддув двигателей внутреннего сгорания: курс лекций / А.Н. Карташевич, Г.М. Кухаренок. Горки: Белорусская государственная сельскохозяйственная академия, 2008. 56 с.
- 3. Круглов, М.Г. Газовая динамика комбинированных двигателей внутреннего сгорания / М.Г. Круглов, А.А. Меднов. М.: Машиностроение, 1988. 360 с.
- 4. Симсон, А.Э. Турбонаддув высокооборотных дизелей / А.Э. Симсон. М.: Машиностроение, 1976. 288 с.
- 5. Тракторные дизели: справочник / Под ред. Б.А. Взорова. М.: Машиностроение, 1981. 535 с.
- 6. Патрахальцев, Н.Н. Форсирование двигателей внутреннего сгорания наддувом / Н.Н. Патрахальцев, А.А. Савастенко. М.: Легион-Автодата, 2004. 176 с.: ил.
- 7. Двигатели внутреннего сгорания. В 3 кн. Кн.1. Теория рабочих процессов: учебник для вузов / В.Н. Луканин [и др.]; под ред. В.Н. Луканина. 2-е изд., перераб. и доп. М.: Высшая школа, 2005. 479 с.: ил.

приложения

ПРИЛОЖЕНИЕ А

Образец оформления обложки курсового проекта

Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Автотракторный факультет

Кафедра «Двигатели внутреннего сгорания»

КУРСОВОЙ ПРОЕКТ

по дисциплин	не «Газовая динамика и агрегаты наддува»
Тема:	
Исполнитель: студент _	(факультет, курс, группа)
	(фамилия, имя, отчество)
Руководитель проекта _	(ученое звание, ученая степень, должность)
	(фамилия, имя, отчество)
	Минск 20

Образец оформления титульного листа курсового проекта

Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Автотракторный факультет

Кафедра «Двигатели внутреннего сгорания»

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА к курсовому проекту

по дисциплине «Газовая динамика и агрегаты наддува»								
Тема:								
Исполнитель:		_ (фамилия, инициалы)						
	(подпись)							
студент	курса г	руппы						
Руководитель		_ (фамилия, инициалы)						
	(ученое звание, ученая степень, должность)						
	Минск 20							
	WINHCK 2U							

приложение б

Таблица П2.1 – Турбокомпрессоры автотракторные. Основные параметры и размеры

Наименование	Типоразмер турбокомпрессора						
параметров и размеров	TKP-4,5	TKP-5,5	TKP-6,5	TKP-7,5	ТКР-9		
Диаметр колес компрессора и турбины, мм	От 45 до 50 вкл.	От 55 до 60 вкл.	От 65 до 70 вкл.	От 75 до 83 вкл.	От 90 до 103 вкл.		
Максимальная частота вращения ротора, мин ⁻¹	180000+ 10000	150000+ 10000	130000+ 10000	120000+ 10000	90000+ 10000		
Максимальная температура газов перед турбиной, °С, при наддуве	700	700	700	700	700		
дизелябензиновогодвигателя	700 950	700 950	700 950	700 -	700		
Коэффициент полезного действия компрессора, %, не менее	73	74	75	76	77		
Коэффициент полезного действия турбины, %, не менее	58	61	64	66	70		
Максимальная степень повышения давления	1,7–2,3	1,8–2,3	2,1-2,7	2,3–3,0	2,4–3,0		
Масса турбокомпрессора (без регулирующего устройства), кг, не более	4,5 ^{+0,5}	5,5+0,5	6,5 ^{+0,5}	8,5+0,5	17,0+1,0		

	_		

ПРИЛОЖЕНИЕ В

Таблица ПЗ.1

		Конс	труктивн	ые размер	ы и парам	етры
Схема, размеры и материал поверхности	Индекс по- верхности	$d_{\scriptscriptstyle 3}$, мм	Ψ	$\phi \text{ m}^2/\text{m}^3$	β	Прочие размеры, мм
1	2	3	4	5	6	7
$\begin{array}{c} A \\ V_x \\ A \end{array}$	ТП1 (ТП1) ТП2 (ТП14) ТП3 (ТП3)	7,24 5,96 5,43	2,53 5,17 4,66	437 510 597	0,79 0,76 0,81	$S_1 = 10$ $S_4 = 6.0$ $S_1 = 12$ $S_4 = 3.5$ $S_1 = 12$ $S_4 = 3.5$
А-A Vx ———————————————————————————————————	ТП4 (ТП2) ТП5 (ТП13)	4,5 5,96	5,25 5,17	645 510	0,725 0,760	$S_1 = 12$ $S_4 = 3.0$ $S_1 = 15$ $S_4 = 4.2$

6

1	2	3	4	5	6	7
Α.	ТП15 (ПТ-1)	2,98	1,80	760	0,567	$S_4 = 2,5$
<u>^</u>	ТП16 (ПТ-8)	3,24	1,80	699	0,567	$S_4 = 2,5$ $S_4 = 2,5$
I A-A	ТП17 (ПТ-2)	3,69	1,49	625	0,577	$S_4 = 2,3$ $S_4 = 3,0$
21 17 10 0 15	ТП18 (ПТ-9)	4,01	1,48	575	0,577	$S_4 = 3,0$ $S_4 = 3,0$
$V_{r} = 0$	ТП19 (ПТ-3)	3,69	1,87	625	0,577	$S_4 = 3,0$ $S_4 = 3,0$
V _x	ТП20 (ПТ-4)	3,69	3,77	625	0,577	$S_4 = 3,0$ $S_4 = 3,0$
	ТП21 (ПТ-5)	3,93	1,41	594	0,584	$S_4 = 3,5$
	ТП22 (ПТ-10)	4,27	4,27	546	0,584	$S_4 = 3,5$ $S_4 = 3,5$
. I S4	ТП23 (ПТ-6)	4,35	1,29	542	0,589	$S_4 = 3,3$ $S_4 = 4,0$
_ 	ТП24 (ПТ-11)	4,72	1,29	499	0,589	$S_4 = 4,0$
А Томпак Л90	ТП37 (ПТ-7)	4,94	2,89	519	0,589	$S_4 = 4,0$
0.40			_,-,-,		0,000	~4 .,.
<u>A</u>						
A-A	ТП6 (ТП4)	4,22	2,91	537	0,567	$S_4 = 4.0$
21 17	ТП7 (ТП5)	3,43	3,52	652	0,559	$S_4 = 3.0$
\rightarrow 21 \rightarrow 17 \rightarrow 0,15	ТП8 (ТП25)	3,43	3,52	652	0,559	$S_4 = 3,0$
V_x	ТП9 (ТП26)	3,43	3,52	652	0,559	$S_4 = 3,0$
	ТП10 (ТП6)	3,43	3,52	652	0,559	$S_4 = 3,0$
	ТП11 (ТП7)	3,83	3,15	589	0,563	$S_4 = 3,5$
	ТП12 (ТП8)	3,83	3,15	589	0,563	$S_4 = 3,5$
1 S4	ТП13 (ТП9)	3,43	3,54	652	0,559	$S_4 = 3,0$
→	ТП14 (ТП15)	3,46	3,56	732	0,538	$S_4 = 3,0$
А Латунь Л52		-, -	- ,			
interpretation to 🕊 contraction that it is seen						

Продолжение таблицы ПЗ.1

1	2	3	4	5	6	7
А-A V _х ————————————————————————————————————	ТП25 (ТП11) ТП26 (ТП16)	3,30 3,30	5,40 4,70	729 815	0,600	$S_1 = 11$ $S_2 = 25$ $S_4 = 2,6$ $S_1 = 9,5$ $S_2 = 21$ $S_4 = 2,3$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ТП31 (ПлСР-1) ТП32 (ПлСР-3)	3,60 3,60	3,88	751 751	0,697 0,697	_

1	2	3	4	5	6	7
A-A 20 18,7 N 0,1	ТП33 (ПлСР-2)	4,21	4,35	735	0,788	1
V _x V _r	ТП34 (ПлСР-4)	4,12	4,38	748	0,788	-
А 5,35 S4 Медь M3	ТП35 (ПлСР-5)	3,51	5,45	886	0,780	_

СОДЕРЖАНИЕ

Введение	 . 3
1. Примерное содержание пояснительной	
записки проекта	 . 4
2. Турбокомпрессор	 . 5
2.1. Расчет параметров турбокомпрессора	 . 5
2.2. Гидродинамический расчет подшипника	
турбокомпрессора	 17
3. Определение параметров охладителя	
наддувочного воздуха	 31
4. Профилирование лопаток колес турбины	
и компрессора	 39
5. Порядок построения лопаток колес	
Литература	 57
ПРИЛОЖЕНИЯ	 58
Приложение А	 58
Приложение Б	
Приложение В	 61
=	

Учебное издание

ГАЗОВАЯ ДИНАМИКА И АГРЕГАТЫ НАДДУВА

Методические указания по выполнению курсового проекта для студентов специальности 1-37 01 01 «Двигатели внутреннего сгорания»

Составители: КУХАР№НОКГеоргий Михайлович ПЕТРУЧЕНКО Александр Николаевич

Редактор Т.А. Подолякова Технический редактор О.В. Дубовик Компьютерная верстка О.В. Дубовик

Подписано в печать 13.11.2009. Формат $60\times84^1/_{16}$. Бумага офсетная. Отпечатано на ризографе. Гарнитура Таймс. Усл. печ. л. 3,8. Уч.-изд. л. 3,0. Тираж 200. Заказ 978.

Издатель и полиграфическое исполнение: Белорусский национальный технический университет. ЛИ № 02330/0494349 от 16.03.2009. Проспект Независимости, 65. 220013, Минск.