

Министерство образования Республики Беларусь

БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра «Высшая математика № 2»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ И ЗАДАНИЯ К КОНТРОЛЬНОЙ РАБОТЕ № 1 ПО ВЫСШЕЙ МАТЕМАТИКЕ

Министерство образования Республики Беларусь

БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра «Высшая математика № 2»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ И ЗАДАНИЯ К КОНТРОЛЬНОЙ РАБОТЕ № 1 ПО ВЫСШЕЙ МАТЕМАТИКЕ

для студентов заочного отделения экономических специальностей

УДК 519.85 (075.8) ЉБК 18.87я7 М 54

Составитель Л.Д. Матвеева

Рецензенты:

В.В. Карпук, Н.А. Шавель

Настоящее издание включает в себя программы и контрольные задания по темам «Элементы линейной алгебры», «Векторная алгебра и аналитическая геометрия», «Введение в математический анализ. Дифференциальное исчисление функции одной переменной» и «Дифференциальное исчисление функций нескольких переменных».

Каждое задание состоит из 30 контрольных вариантов. Все темы содержат основные теоретические сведения и примеры решения типовых задач.

Издание содержит список экзаменационных вопросов и рекомендуемой литературы.

Методические указания предназначены для студентов экономических специальностей заочного отделения БНТУ. Они могут быть также полезны преподавателям, ведущим практические занятия по данному курсу.

Тема 1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ

- 1. Матрицы. Сложение матриц; умножение матрицы на число; произведение матриц. Обратная матрица.
- 2. Определители п-го порядка и их свойства. Методы вычисления определителей.
 - 3. Обратная матрица.
 - 4. Ранг матрицы.
 - 5. Решение невырожденных систем линейных уравнений.
 - 6. Теорема Кронекера Капелли. Решение произвольных линейных систем.

1.1. Решение невырожденных систем линейных уравнений

Пусть задана система линейных уравнений

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m, \end{cases}$$

$$(1.1)$$

где $a_{ij},\,b_i\in R$ — заданные числа, x_j — неизвестные, $1\leq i\leq m,\,1\leq j\leq n$.

Решением системы (1.1) называется такое множество значений неизвестных $x_1 = c_1$, $x_2 = c_2$, ..., $x_n = c_n$, при которых каждое уравнение обращается в тождество.

Система уравнений, имеющая хотя бы одно решение, называется совместной, а система, не имеющая решений — несовместной.

Матрицы

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \quad \tilde{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{pmatrix}$$

называются матрицей системы и расширенной матрицей системы соответственно.

Рассмотрим случай, когда число уравнений m системы совпадает с числом неизвестных n (m=n). Тогда матрица системы A является квадратной матрицей порядка n.

Система n уравнений с n неизвестными называется **невырожденной**, если определитель матрицы системы A отличен от нуля ($\det A \neq 0$).

Обозначим

$$\Delta = \det A = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

Невырожденная система имеет единственное решение. Существует два метода решения таких систем.

1. Правило Крамера. Если определитель Δ отличен от нуля, то решение системы находится по формулам

$$x_1 = \frac{\Delta_1}{\Lambda}, \quad x_2 = \frac{\Delta_2}{\Lambda}, \quad \dots, \quad x_n = \frac{\Delta_n}{\Lambda},$$
 (1.2)

где Δ_j $(j=\overline{1,n})$ — определитель, полученный из определителя Δ заменой j—го столбца столбцом свободных членов.

2. Матричный метод. Введем матрицу столбец свободных членов

системы
$$B = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{pmatrix}$$
 и матрицу-столбец неизвестных $X = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$.

Тогда систему n уравнений с n неизвестными можно записать в виде

$$A \cdot X = B. \tag{1.3}$$

Эта форма записи системы называется матричной.

Матрицей A^{-1} , обратной к матрице A размера $n \times n$, называется такая матрица, для которой справедливо равенство

$$A \cdot A^{-1} = A^{-1} \cdot A = E$$

где E — единичная матрица n-го порядка.

Матрица, определитель которой не равен нулю, называется **невырожденной**.

Для того чтобы данная матрица имела обратную, необходимо и достаточно, чтобы она была невырожденной.

Рассмотрим уравнение (1.3). Пусть A — невырожденная матрица. Тогда решение системы можно найти по формуле

$$X = A^{-1} \cdot B \,. \tag{1.4}$$

Пример 1.1. Проверить невырожденность системы линейных уравне- $\begin{cases} 3x_1 - 4x_2 + 4x_3 = 7, \\ 5x_1 - 3x_2 + 4x_3 = 11, \text{ и решить ee: a) по формулам Крамера; б) матричным } \\ x_1 - 2x_2 + 2x_3 = 3 \end{cases}$

методом.

Решение. Запишем матрицу системы $A = \begin{pmatrix} 3 & -4 & 4 \\ 5 & -3 & 4 \\ 1 & -2 & 2 \end{pmatrix}$. Проверим невы-

рожденность системы. Для этого вычисляем определитель Δ матрицы A:

$$\Delta = \det A = \begin{vmatrix} 3 & -4 & 4 \\ 5 & -3 & 4 \\ 1 & -2 & 2 \end{vmatrix} = 2 \neq 0.$$

Так как $\Delta \neq 0$, то система невырождена. Решаем ее *а) по формулам Крамера*.

Вычисляем определители:

$$\Delta_{1} = \begin{vmatrix} 7 & -4 & 4 \\ 11 & -3 & 4 \\ 3 & -2 & 2 \end{vmatrix} = 2; \quad \Delta_{2} = \begin{vmatrix} 3 & 7 & 4 \\ 5 & 11 & 4 \\ 1 & 3 & 2 \end{vmatrix} = 4; \quad \Delta_{3} = \begin{vmatrix} 3 & -4 & 7 \\ 5 & -3 & 11 \\ 1 & -2 & 3 \end{vmatrix} = 6.$$

По формулам (1.2) находим решение системы:

$$x_1 = \frac{\Delta_1}{\Lambda} = \frac{2}{2} = 1$$
, $x_2 = \frac{\Delta_2}{\Lambda} = \frac{4}{2} = 2$, $x_3 = \frac{\Delta_3}{\Lambda} = \frac{6}{2} = 3$.

Делаем проверку: $3 \cdot 1 - 4 \cdot 2 + 4 \cdot 3 = 7$; $5 \cdot 1 - 3 \cdot 2 + 4 \cdot 3 = 11$; $1 - 2 \cdot 2 + 2 \cdot 3 = 3$.

б) матричным методом.

Находим обратную матрицу

$$A^{-1} = \frac{1}{\det A} \cdot A^c,$$

где A^c — союзная матрица, составленная из алгебраических дополнений A_{ij} элементов a_{ij} матрицы A.

$$A^{c} = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix}, A_{ij} = (-1)^{i+j} M_{ij},$$

где M_{ij} — определитель, полученный из определителя Δ вычеркиванием i-й строки и j-го столбца. Имеем:

$$A_{11} = \begin{vmatrix} -3 & 4 \\ -2 & 2 \end{vmatrix} = 2, \quad A_{12} = -\begin{vmatrix} 5 & 4 \\ 1 & 2 \end{vmatrix} = -6, \quad A_{13} = \begin{vmatrix} 5 & -3 \\ 1 & -2 \end{vmatrix} = -7,$$

$$A_{21} = -\begin{vmatrix} -4 & 4 \\ -2 & 2 \end{vmatrix} = 0, \quad A_{22} = \begin{vmatrix} 3 & 4 \\ 1 & 2 \end{vmatrix} = 2, \quad A_{23} = -\begin{vmatrix} 3 & -4 \\ 1 & -2 \end{vmatrix} = 2,$$

$$A_{31} = \begin{vmatrix} -4 & 4 \\ -3 & 4 \end{vmatrix} = -4, \quad A_{32} = -\begin{vmatrix} 3 & 4 \\ 5 & 4 \end{vmatrix} = 8, \quad A_{33} = \begin{vmatrix} 3 & -4 \\ 5 & -3 \end{vmatrix} = 11.$$

Тогда получаем

$$A^{-1} = \frac{1}{2} \begin{pmatrix} 2 & 0 & -4 \\ -6 & 2 & 8 \\ -7 & 2 & 11 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -2 \\ -3 & 1 & 4 \\ -\frac{7}{2} & 1 & \frac{11}{2} \end{pmatrix}.$$

По формуле (1.4) находим решение:

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = A^{-1} \cdot B = \begin{pmatrix} 1 & 0 & -2 \\ -3 & 1 & 4 \\ -\frac{7}{2} & 1 & \frac{11}{2} \end{pmatrix} \cdot \begin{pmatrix} 7 \\ 11 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

Otbet: $x_1 = 1$, $x_2 = 2$, $x_3 = 3$.

1.2. Решение произвольных систем линейных уравнений

Рассмотрим произвольную систему линейных уравнений (1.1). Элементарными преобразованиями матрицы называются:

- а) перестановка местами любых двух строк;
- б) умножение строки на некоторое число $\alpha \neq 0$;
- в) прибавление к одной строке матрицы любой другой строки, умноженной на некоторое число;
- г) удаление нулевой строки.

Решение системы методом Жордана–Гаусса основано на следующем утверждении: элементарные преобразования расширенной матрицы системы не изменяют множества решений системы.

Суть метода заключается в том, чтобы при помощи элементарных преобразований привести расширенную матрицу к наиболее простому виду.

С помощью операции ϵ) можно исключить какое-либо неизвестное из всех уравнений, кроме одного.

Переменная x_j называется **базисной** в i-м уравнении, если $a_{ij}=1,\ a_{sj}=0$ при $s\neq i,\ s=1,\ 2,\ ...,\ m$.

Матрица системы с помощью элементарных преобразований приводится к так называемому базисному виду, если в каждом уравнении системы есть базисная переменная.

Если матрица системы приведена к базисному виду, то переменные, не являющиеся базисными, называются **свободными**.

Решение системы, полученное после приравнивания нулю всех свободных переменных, называется базисным.

Опишем одну итерацию метода Жордана-Гаусса.

В первой строке расширенной матрицы находим ненулевой элемент $a_{1j} \neq 0$. Если таковых нет, то в случае $b_1 = 0$ вычеркиваем данную нулевую строку; если $b_1 \neq 0$, то система несовместна.

Элемент a_{ij} называют ведущим элементом.

Если $a_{1j} \neq 1$, то делим первую строку расширенной матрицы на этот элемент a_{1j} . Ко всем строкам, кроме первой, прибавляем первую строку, умноженную на $(-a_{ij})$, где i – номер изменяемой строки.

После этой операции коэффициент при x_j в первом уравнении будет равен единице, а во всех остальных уравнениях — нулю. Следовательно, переменная x_j станет базисной.

Описанную итерацию проводим для остальных строк расширенной матрицы, пока не получим m базисных неизвестных (в каждом уравнении — по одной базисной переменной).

После этого находим общее решение и базисное (приравнивая свободные неизвестные нулю).

Пример 1.2. Решить систему линейных уравнений

$$\begin{cases} x_1 + 2x_2 + 3x_3 + x_4 = 1, \\ 3x_1 + 13x_2 + 13x_3 + 5x_4 = 3, \\ x_1 + 5x_2 + 3x_3 + x_4 = 7, \\ 3x_1 + 7x_2 + 7x_3 + 2x_4 = 12 \end{cases}$$

методом Жордана-Гаусса. Найти общее и базисное решения.

Решение. Вычисления будем производить в таблице. В исходной части таблицы записываем расширенную матрицу системы.

x_1	x_2	x_3	x_4	b
1	2	3	1	1
3	13	13	5	3
1	5	3	1	7
3	7	7	2	12

В первой строке выберем элемент $a_{11} = 1$ ведущим. Выделим ведущий элемент рамкой. Изменяем вторую, третью и четвертую строки: ко второй строке по элементам прибавляем первую строку, умноженную на (-3), к третьей – первую строку, умноженную на (-1), и к четвертой – первую строку, умноженную на (-3). В результате получим таблицу, в которой переменная x_1 стала базисной.

x_1	x_2	x_3	x_4	b
1	2	3	1	1
0	7	4	2	0
0	3	0	0	6
0	1	-2	-1	9

Выбираем элемент $a_{42} = 1$ ведущим. С помощью элементарных преобразований получаем таблицу, в которой переменная x_2 стала базисной.

x_1	x_2	x_3	x_4	b
1	0	7	3	-17
0	0	18	9	-63
0	0	6	3	-21
0.	1	-2	1	9

Выбираем, например, элемент $a_{34} = 3$ ведущим и делим на него элементы третьей строки. Получаем таблицу

x_{l}	x_2	x_3	X_4	b	
1	0	7	3	-17	
0	0	18	9	-63	
0	0	2	1	- 7	
0	1_	-2	-1	9	

Теперь делаем нули в остальных строках четвертого столбца. Получаем таблицу, в которой переменная x_4 стала базисной.

x_1	x_2	x_3	x_4	b
1	0	1	0	4
0	0	0	0	0
0	0	2	1	-7
0	1	0	0	2

Удаляем вторую нулевую строку, получаем таблицу

x_{l}	x_2	x_3	x_4	b
1	0	1	0	4
0	0	2	1	-7
0	1	0	0	2

Поскольку каждое уравнение теперь содержит по одной базисной переменной, то оставшаяся небазисная переменная x_3 является свободной.

Полагаем $x_3 = c$. Из последней строки таблицы получаем $x_2 = 2$.

Из второй строки следует $2x_3 + x_4 = -7$, откуда находим $x_4 = -7 - 2x_3$ или $x_4 = -7 - 2c$.

Из первой строки следует $x_1 + x_3 = 4$, откуда получаем $x_1 = 4 - x_3$ или $x_1 = 4 - c$.

Выписываем общее решение: $(4-c; 2; c; -7-2c, c \in R)$.

Найдем базисное решение. Положим c=0. Тогда имеем $x_1=4,\ x_2=2,\ x_3=0,\ x_4=-7$.

Сделаем проверку, подставляя найденное решение в исходную систему $4+2\cdot 2+3\cdot 0-7=1;$ $3\cdot 4+13\cdot 2+13\cdot 0+5\cdot (-7)=3;$

$$4+5\cdot 2+3\cdot 0+(-7)=7$$
; $3\cdot 4+7\cdot 2+7\cdot 0+2\cdot (-7)=12$.

Ответ. Общее решение: $(4-c; 2; c; -7-2c, c \in R)$, базисное решение: $x_1=4, x_2=2, x_3=0, x_4=-7$.

Задание 1. Проверить невырожденность системы линейных уравнений и решить ее: а) по формулам Крамера; б) матричным методом.

1.1.
$$\begin{cases} x+3y-z=1, \\ 2x+4y-z=6, \\ 3x-2y+5z=13. \end{cases}$$
 1.2.
$$\begin{cases} 4x+2y-z=0, \\ x+2y+z=1, \\ y-z=3. \end{cases}$$
 1.3.
$$\begin{cases} x+y-z=6, \\ 2x+3y-4z=21, \\ 7x-y-3z=6. \end{cases}$$

1.4.
$$\begin{cases} 2x + z = 0, \\ -x + 2y - z = 2, \\ x + 2y + z = 3. \end{cases}$$
1.5
$$\begin{cases} x + 2y + 3z = 6, \\ 2x + 3y - z = 4, \\ 3x + y - 4z = 0. \end{cases}$$
1.6.
$$\begin{cases} 2x - y + 5z = 4, \\ 5x + 2y + 13z = 2, \\ 3x - y + 5z = 0. \end{cases}$$

1.7
$$\begin{cases} 2x - 3y + 5z = 6, \\ 3x - y + 5z = 10, \\ x + 2y - 4z = -7. \end{cases}$$
 1.8.
$$\begin{cases} 2x + 3y + 5z = 12, \\ x - 4y + 3z = -22, \\ 3x - y - 2z = 0. \end{cases}$$
 2x + y = 3,
$$x + z = 1, \\ 3x + y + 2z = 0. \end{cases}$$

1.10.
$$\begin{cases} 3x + y = -6, \\ x - 2y - z = 5, \\ 3x + 4y - 2z = 13. \end{cases}$$
1.11.
$$\begin{cases} 4x + 2y - z = 12, \\ x + 2y + z = 7, \\ y - z = -1. \end{cases}$$
1.12.
$$\begin{cases} 2x + 3y - z = 4, \\ x + 2y + 2z = 5, \\ 3x + 4y - 5z = 2. \end{cases}$$
1.14.
$$\begin{cases} x + 5y + z = 0, \\ 2x - 4y - 3z = -1, \\ 3x + 4y + 2z = 8. \end{cases}$$
1.15.
$$\begin{cases} 2x - y = -1, \\ x - 2y - z = -2, \\ y + z = -2. \end{cases}$$
1.16.
$$\begin{cases} 3x + y + z = 8, \\ x + 2y - z = -2, \\ 2x - 3y + 2z = 2. \end{cases}$$
1.17.
$$\begin{cases} 2x - y = -1, \\ 3x + 4y - 3z = -1, \\ 3x + 4y - 2z = 8. \end{cases}$$
1.18.
$$\begin{cases} 3x + 2y + 5z = -10, \\ 2x + 5y - 3z = 6, \\ x + 3y - 6z = 12. \end{cases}$$

1.19.
$$\begin{cases} x - y - 3z = 13, \\ 2x + y - z = 0, \\ 3x - 2y + 4z = -15. \end{cases}$$
1.20.
$$\begin{cases} 3x + 4y + 2z = 8, \\ 2x - 4y - 3z = -1, \\ x + 5y + z = 0. \end{cases}$$
1.21.
$$\begin{cases} 5x + 8y - z = 7, \\ 2x - 3y + 2z = 9, \\ x + 2y + 3z = 1. \end{cases}$$

$$\begin{cases} 4x + 2y - z = 12, \\ (2x + 4y + 3z = 3) \end{cases}$$

$$\begin{cases} 3x - 2y + 4z = -15. & x + 5y + z = 0. & x + 2y + 3z = 1. \\ 4x + 2y - z = 12, & 2x + 3y + 3z = 13, \\ x + 2y + z = 7, & 2x - 3y + 3z = -10, \\ y - z = -1. & x + z = 0. & x + 2y + 5z = 13, \\ 2x - 3y + 3z = -10, & x + 3y - z = -1. \end{cases}$$

$$\begin{cases} 2x + 4y + 3z = 3, \\ 3x - 2y + 5z = 13, \\ x + 3y - z = -1. \end{cases}$$

$$\begin{cases} 2x - 4y + 5z = 4, \\ 5x + 2y + 13z = 2, \\ 3x - y + 5z = 0. \end{cases}$$

$$\begin{cases} 2x - 4y + 5z = 4, \\ 5x + 2y + 13z = 2, \\ 3x - y + 5z = 0. \end{cases}$$

$$\begin{cases} 3x + 4y + 2z = 8, \\ x + 5y + 2z = 5, \end{cases}$$

$$\begin{cases} 3x + 4y + 2z = 8, \\ x + 5y + 2z = 5, \end{cases}$$

$$\begin{cases} 3x + 4y + 2z = 8, \\ x + 5y + 2z = 5, \end{cases}$$

$$\begin{cases} 3x + 2y - 4z = 7, \\ 2x - 3y + 5z = 11, \end{cases}$$

$$\begin{cases} 3x + 2y + 5z = -10, \\ 3x + 2y + 5z = -10, \end{cases}$$

1.25.
$$\begin{cases} 2x - 4y + 5z = 4, \\ 5x + 2y + 13z = 2, \\ 3x - y + 5z = 0. \end{cases}$$
 1.26.
$$\begin{cases} 7x - y - 3z = 6, \\ 2x + 3y - 4z = 21, \\ x + y - z = 6. \end{cases}$$
 1.27.
$$\begin{cases} 3x + y - 4z = 0, \\ x + 2y + 3z = 6, \\ 2x + 3y - z = 4. \end{cases}$$

1.28.
$$\begin{cases} 3x + 4y + 2z = 8, \\ x + 5y + 2z = 5, \\ 2x + 3y + 4z = 3. \end{cases}$$
1.29.
$$\begin{cases} x + 2y - 4z = 7, \\ 2x - 3y + 5z = 11, \\ 3x - y + 5z = 10. \end{cases}$$

$$\begin{cases} x + 3y - 6z = 12, \\ 3x + 2y + 5z = -10, \\ 3x + 5y - 3z = 6. \end{cases}$$

Задание 2. Решить систему линейных уравнений методом Жордана-Гаусса. Найти общее и базисное решения.

2.1.
$$\begin{cases} 2x_1 + 3x_2 - x_3 + x_4 = 5, \\ x_1 - 2x_2 + x_3 - 4x_4 = -4, \\ 3x_1 + x_2 - x_3 - x_4 = 2, \\ 4x_1 - x_2 - 5x_4 = -2. \end{cases}$$
2.2.
$$\begin{cases} x_1 - 2x_2 + x_3 + x_4 = 1, \\ 2x_1 + 3x_2 - x_3 + x_4 = 5, \\ -x_1 + 3x_2 + x_3 - 2x_4 = 1, \\ x_1 + 6x_2 - x_4 = 6. \end{cases}$$

2.3.
$$\begin{cases} 2x_1 + x_2 - x_3 + 3x_4 = 5, \\ x_1 + 2x_2 - x_3 + x_4 = 3, \\ 5x_1 - x_2 + x_3 - 2x_4 = 3, \\ 6x_1 + x_2 - x_4 = 6. \end{cases}$$

2.5.
$$\begin{cases} 2x_1 + x_2 - 2x_3 + x_4 = -2, \\ x_1 + 2x_2 - 5x_3 = -2, \\ 3x_1 + 4x_2 - x_3 + 2x_4 = 8, \\ 4x_1 + 6x_2 - 6x_3 + 2x_4 = 6, \end{cases}$$

2.7.
$$\begin{cases} 2x_1 - 3x_2 + 4x_3 - 2x_4 = 1, \\ 4x_1 - 6x_2 + 8x_3 + x_4 = 7, \\ x_1 - 5x_2 + x_3 - 2x_4 = -5, \\ 3x_1 - x_2 + 7x_3 + 3x_4 = 12. \end{cases}$$

2.9.
$$\begin{cases} 2x_1 + x_2 - x_3 + x_4 = 3, \\ x_1 + 2x_2 + x_3 - 4x_4 = 0, \\ 3x_1 - 5x_2 + 2x_3 + x_4 = 1, \\ 4x_1 - 3x_2 + 3x_3 - 3x_4 = 1. \end{cases}$$

2.11.
$$\begin{cases} 3x_1 + 2x_2 - x_3 + x_4 = 5, \\ 4x_1 - x_2 + x_3 - 4x_4 = 0, \\ x_1 + x_2 - x_3 - 4x_4 = -3, \\ 4x_1 - 3x_2 - 2x_3 - 3x_4 = 2. \end{cases}$$

2.13.
$$\begin{cases} 3x_1 + x_2 - x_3 + 3x_4 = 6, \\ x_1 + 2x_2 + x_3 - x_4 = 3, \\ 4x_1 + x_2 + x_3 - 5x_4 = 1, \\ 3x_1 - x_2 - 4x_4 = -2. \end{cases}$$

2.15.
$$\begin{cases} x_1 - x_2 + x_3 - x_4 = 0, \\ 2x_1 - 2x_2 + x_3 + 4x_4 = 5, \\ 3x_1 - 3x_2 + 2x_3 + 3x_4 = 5, \\ x_1 + 8x_2 - 5x_3 + x_4 = 5. \end{cases}$$

2.4.
$$\begin{cases} x_1 + x_2 - x_3 + x_4 = 2, \\ 2x_1 + 2x_2 + 3x_3 - x_4 = 6, \\ x_1 - x_2 - 2x_3 + 4x_4 = 2, \\ 3x_1 + x_2 + x_3 + 3x_4 = 8. \end{cases}$$

2.6.
$$\begin{cases} 3x_1 - x_2 + x_3 - x_4 = 2, \\ 2x_1 - 2x_2 + x_3 + 4x_4 = 5, \\ 5x_1 + x_2 - x_3 + x_4 = 6, \\ 3x_1 + 3x_2 - 2x_3 - 3x_4 = 1. \end{cases}$$

2.8.
$$\begin{cases} 3x_1 + 2x_2 - x_3 + x_4 = 5, \\ x_1 - 2x_2 + 2x_3 - x_4 = 0, \\ 5x_1 + x_2 - 3x_3 + 2x_4 = 5, \\ 4x_1 + 3x_2 - 5x_3 + 3x_4 = 5. \end{cases}$$

2.10.
$$\begin{cases} 4x_1 - 2x_2 + 3x_3 - x_4 = 4, \\ 2x_1 - 2x_2 + x_3 + x_4 = 2, \\ 3x_1 + x_2 - x_3 + 2x_4 = 5, \\ x_1 + 3x_2 - 2x_3 + x_4 = 3. \end{cases}$$

2.12.
$$\begin{cases} 2x_1 + 3x_2 - x_3 + x_4 = 5, \\ x_1 - 2x_2 + x_3 + x_4 = 1, \\ 3x_1 - 2x_2 - 2x_3 - x_4 = -2, \\ 5x_1 + x_2 - 3x_3 = 3. \end{cases}$$

2.14.
$$\begin{cases} 2x_1 - 3x_2 + 4x_3 - 2x_4 = 1, \\ 4x_1 - 6x_2 + 8x_3 + x_4 = 7, \\ 5x_1 + 3x_2 - x_3 - x_4 = 6, \\ x_1 + 9x_2 - 9x_3 - 2x_4 = -1. \end{cases}$$

2.16.
$$\begin{cases} x_1 + 2x_2 - 5x_3 + x_4 = -1, \\ x_1 + x_2 - x_3 + x_4 = 2, \\ 2x_1 + 3x_2 - 6x_3 + 2x_4 = 1, \\ 5x_1 - x_2 - x_3 + 2x_4 = 5. \end{cases}$$

2.17.
$$\begin{cases} 2x_1 + 2x_2 + 3x_3 - x_4 = 6, \\ x_1 - x_2 + 2x_3 - x_4 = 1, \\ 3x_1 + x_2 + 5x_3 - 2x_4 = 7, \\ x_1 - 8x_2 + 4x_3 + x_4 = -2. \end{cases}$$

2.19.
$$\begin{cases} 3x_1 + 3x_2 - x_3 - 2x_4 = 3, \\ x_1 + 5x_2 + x_3 - 3x_4 = 4, \\ 2x_1 - 2x_2 - 2x_3 + x_4 = -1, \\ 3x_1 - 3x_2 + 2x_3 - x_4 = 1. \end{cases}$$

2.21.
$$\begin{cases} 2x_1 + 2x_2 + 3x_3 - x_4 = 6, \\ x_1 - x_2 + x_3 + 3x_4 = 4, \\ x_1 + 3x_2 + 2x_3 - 4x_4 = 2, \\ 5x_1 + x_2 - 2x_3 + x_4 = 5. \end{cases}$$

2.23.
$$\begin{cases} 2x_1 + 4x_2 - 4x_3 + x_4 = 3, \\ x_1 - x_2 + x_3 - x_4 = 0, \\ 3x_1 + 5x_2 - x_3 + x_4 = 8, \\ x_1 + x_2 + 3x_3 = 5. \end{cases}$$

2.25.
$$\begin{cases} 3x_1 + 5x_2 - 8x_3 + 2x_4 = 2, \\ x_1 - 3x_2 - 2x_3 + x_4 = -3, \\ 3x_1 + x_2 + x_3 - 5x_4 = 0, \\ 2x_1 + 4x_2 + 3x_3 - 6x_4 = 3. \end{cases}$$

2.27.
$$\begin{cases} 4x_1 - x_2 - x_3 - x_4 = 1, \\ 3x_1 - 2x_2 - 2x_3 + x_4 = 0, \\ x_1 + x_2 + x_3 - 2x_4 = 1, \\ 5x_1 - 3x_4 = 2. \end{cases}$$

2.29.
$$\begin{cases} 2x_1 - 2x_2 + 10x_3 - 6x_4 = 4, \\ x_1 - 5x_2 + 5x_3 + x_4 = 2, \\ x_1 - 3x_2 + x_3 - x_4 = -2, \\ 2x_1 - 8x_2 + 6x_3 = 0. \end{cases}$$

2.18.
$$\begin{cases} 2x_1 + x_2 + x_3 + 3x_4 = 7, \\ x_1 + 2x_2 - x_3 - x_4 = 1, \\ x_1 - x_2 + 2x_3 + 4x_4 = 6, \\ 2x_1 + 2x_2 - x_3 + x_4 = 4. \end{cases}$$

2.20.
$$\begin{cases} x_1 - x_2 - x_3 + 4x_4 = 3, \\ 4x_1 + x_2 + x_3 - 2x_4 = 4, \\ 2x_1 + 5x_2 - 2x_3 - x_4 = 4, \\ 3x_1 + 2x_2 + 2x_3 - 6x_4 = 1. \end{cases}$$

2.22.
$$\begin{cases} 2x_1 + x_2 + 2x_3 - x_4 = 4, \\ x_1 + 2x_2 + x_3 + 3x_4 = 7, \\ x_1 - x_2 + x_3 - 4x_4 = -3, \\ 2x_1 - 2x_2 + 5x_3 - x_4 = 5. \end{cases}$$

2.24.
$$\begin{cases} 3x_1 - 5x_2 - x_3 + x_4 = -2, \\ 2x_1 - x_2 - 2x_3 + 4x_4 = 3, \\ 5x_1 - 6x_2 - 3x_3 + 5x_4 = 1, \\ x_1 - 4x_2 + x_3 + x_4 = -1. \end{cases}$$

2.26.
$$\begin{cases} 2x_1 + x_2 + 6x_3 - 5x_4 = 4, \\ x_1 + 2x_2 + 2x_3 - x_4 = 4, \\ 2x_1 + 2x_2 - 5x_3 - x_4 = -2, \\ 3x_1 + 4x_2 - 3x_3 - 2x_4 = 2. \end{cases}$$

2.28.
$$\begin{cases} 4x_1 + 2x_2 - 3x_3 - x_4 = 2, \\ 5x_1 + x_2 - 2x_3 - x_4 = 3, \\ x_1 + 8x_2 + x_3 - 5x_4 = 5, \\ 3x_1 - 6x_2 - 4x_3 + 4x_4 = -3. \end{cases}$$

2.30.
$$\begin{cases} 7x_1 - 5x_2 + 2x_3 - 8x_4 = -4, \\ 3x_1 - x_2 + 2x_3 - x_4 = 3, \\ 2x_1 + 2x_2 - 3x_3 + x_4 = 2, \\ 2x_1 + x_2 - x_3 = 5. \end{cases}$$

Тема 2. ВЕКТОРНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

- 1. Векторы на плоскости и в пространстве. Сложение и вычитание векторов. Умножение вектора на скаляр. Проекция вектора на ось.
- 2. Система декартовых прямоугольных координат в пространстве. Проекции вектора на оси координат. Направляющие косинусы вектора. Длина и координаты вектора. Действия над векторами в координатной форме.
 - 3. Скалярное произведение векторов. Его свойства и приложение.
- 4. Векторное произведение двух векторов. Его свойства и приложение. Условие компланарности трех векторов.
 - 5. Смешанное произведение трех векторов. Его свойства и приложение.
- 6. Различные уравнения плоскости. Уравнения прямой на плоскости и в пространстве.
- 7. Взаимное расположение плоскостей и прямых. Угол между плоскостями. Угол между прямыми. Угол между прямой и плоскостью.
 - 8. Расстояние от точки до прямой и плоскости.
- 9. Кривые второго порядка. Эллипс, гипербола, парабола. Вывод канонических уравнений.
- 10. Канонические уравнения поверхностей второго порядка. Исследование формы поверхности методом сечений.
- 11. Векторное пространство. Линейная зависимость и независимость системы векторов. Базис векторного пространства.

2.1. Векторы. Скалярное, векторное и смешанное произведение векторов

Скалярным произведением векторов \vec{a} и \vec{b} называется **число**, равное произведению длин этих векторов на косинус угла φ между ними:

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos \varphi .$$

Если векторы \vec{a} и \vec{b} заданы своими координатами $\vec{a}=\left(a_x,\,a_y,\,a_z\right),$ $\vec{b}=\left(b_x,\,b_y,\,b_z\right),$ то $\vec{a}\cdot\vec{b}=a_x\cdot b_x+a_y\cdot b_y+a_z\cdot b_z$.

Угол ϕ между векторами \vec{a} и \vec{b} определяется по формуле

$$\cos \varphi = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} = \frac{a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z}{\sqrt{a_x^2 + a_y^2 + a_z^2} \cdot \sqrt{b_x^2 + b_y^2 + b_z^2}}.$$
 (2.1)

Векторным произведением вектора \vec{a} на вектор \vec{b} называется **вектор**, обозначаемый символом $\left[\vec{a}, \, \vec{b}\right]$ и удовлетворяющий следующим условиям:

a)
$$\left[\vec{a}, \vec{b} \right] = \left| \vec{a} \right| \cdot \left| \vec{b} \right| \cdot \sin \varphi ,$$
 6) $\left[\vec{a}, \vec{b} \right] \perp \vec{a}, \vec{b},$

в) векторы \vec{a} , \vec{b} , $\lceil \vec{a}, \vec{b} \rceil$ образуют правую тройку векторов.

Модуль векторного произведения $\left[\vec{a},\vec{b}\right]$ равен площади S параллелограмма, построенного на векторах \vec{a} и \vec{b} :

$$S = \begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} . \tag{2.2}$$

В координатной форме векторное произведение $\left[\vec{a},\vec{b}\right]$ находится по формуле

$$\begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} \vec{i} - \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} \vec{j} + \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix} \vec{k}.$$

Смешанным произведением трех векторов \vec{a} , \vec{b} , \vec{c} называется **число**, равное скалярному произведению вектора $\left[\vec{a},\vec{b}\right]$ на вектор \vec{c} . Обозначается смешанное произведение $\vec{a}\cdot\vec{b}\cdot\vec{c}$.

В векторной форме смешанное произведение $\vec{a}, \vec{b}, \vec{c}$ находят по формуле

$$\vec{a} \cdot \vec{b} \cdot \vec{c} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}.$$

Модуль смещанного произведения $\vec{a}\cdot\vec{b}\cdot\vec{c}$ равен объему V параллелепипеда, построенного на векторах \vec{a} , \vec{b} , \vec{c} :

$$V = \left| \vec{a} \cdot \vec{b} \cdot \vec{c} \right|. \tag{2.3}$$

2.2. Плоскость и прямая в пространстве

Нормальным вектором плоскости называется всякий (отличный от нуля) вектор, перпендикулярный к этой плоскости.

Уравнение плоскости, проходящей через заданную точку $M_0(x_0, y_0, z_0)$ и имеющее нормальный вектор $\vec{n} = (A, B, C)$, в декартовых координатах имеет вид

$$A(x-x_0)+B(y-y_0)+C(z-z_0)=0 \text{ или } Ax+By+Cz+D=0,$$
 где $D=-(Ax_0+By_0+Cz_0).$ (2.4)

Уравнение (2.4) называют общим уравнением плоскости.

Если все коэффициенты уравнения (2.4) отличны от нуля, то его можно преобразовать к виду

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1, (2.5)$$

где $a = -\frac{D}{A}, b = -\frac{D}{B}, c = -\frac{D}{C}$ — величины отрезков, отсекаемых на коорди-

натных осях. Уравнение (2.5) называется уравнением плоскости в отрезках.

Уравнение плоскости, проходящей через три заданные точки $M_1(x_1, y_1, z_1), M_2(x_2, y_2, z_2), M_3(x_3, y_3, z_3),$ имеет вид

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0.$$
 (2.6)

Направляющим вектором прямой называется вектор, лежащий на прямой или параллельный ей.

Пусть $\vec{s} = (m, n, p)$ – направляющий вектор прямой, точка $M_0(x_0, y_0, z_0)$ принадлежит прямой. Тогда уравнения прямой вида

$$\frac{x - x_0}{m} = \frac{y - y_0}{n} = \frac{z - z_0}{p} \tag{2.7}$$

называют каноническими уравнениями прямой в пространстве.

Пусть даны две точки $M_1(x_1,y_1,z_1)$ и $M_2(x_2,y_2,z_2)$, лежащие на прямой.

Уравнения вида

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$$
 (2.8)

называют уравнениями прямой, проходящей через две заданные точки.

Угол ϕ между прямой $\frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p}$ и плоскостью Ax+By+Cz+D=0 определяется по формуле

$$\sin \varphi = \frac{|Am + Bn + Cp|}{\sqrt{A^2 + B^2 + C^2} \cdot \sqrt{m^2 + n^2 + p^2}}.$$
 (2.9)

Пример 2.1. Даны координаты вершин пирамиды A_1 (3; 4; 5), A_2 (-2; 6; 1), A_3 (-3; -4;0), A_4 (5; -2; -1). Требуется найти: а) длину ребра A_1A_2 ; б) угол между ребрами A_1A_2 и A_1A_4 ; в) площадь грани $A_1A_2A_3$; г) объем пирамиды; д) уравнение прямой A_1A_4 ; е) уравнение плоскости $A_1A_2A_3$; ж) угол между ребром A_1A_4 и гранью $A_1A_2A_3$; и) уравнение высоты, опущенной из вершины A_4 на грань $A_1A_2A_3$.

Решение. а) Длину ребра $A_1 A_2$ определяем по формуле

$$\left| \overrightarrow{A_1 A_2} \right| = \sqrt{x^2 + y^2 + z^2} ,$$

где $\overline{A_1A_2}=\left(x;\,y;\,z\right), \quad x=x_2-x_1, \quad y=y_2-y_1, \quad z=z_2-z_1.$ В нашем случае $\overline{A_1A_2}=\left(-5;\,2;\,-4\right).$ Тогда $\overline{A_1A_2}=\sqrt{\left(-5\right)^2+2^2+\left(-4\right)^2}=\sqrt{25+4+16}=\sqrt{45}=3\sqrt{5}$.

б) Угол между ребрами A_1A_2 и A_1A_4 находим как угол между векторами $\overrightarrow{A_1A_2}$ и $\overrightarrow{A_1A_2}$ и $\overrightarrow{A_1A_4}$ по формуле (2.1): $\cos \phi = \frac{\overrightarrow{A_1A_2} \cdot \overrightarrow{A_1A_4}}{\left|\overrightarrow{A_1A_2}\right| \cdot \left|\overrightarrow{A_1A_4}\right|}$. Имеем $\overrightarrow{A_1A_2} = \left(-5; 2; -4\right)$, находим $\overrightarrow{A_1A_4} = \left(2; -6; -6\right)$.

Тогда

$$\cos \varphi = \frac{-5 \cdot 2 + 2 \cdot (-6) + (-4) \cdot (-6)}{3\sqrt{5} \cdot \sqrt{2^2 + (-6)^2} + \left(-6\right)^2} = \frac{-10 - 12 + 24}{3\sqrt{5} \cdot \sqrt{4 + 36 + 36}} = \frac{2}{3\sqrt{5} \cdot \sqrt{76}} = \frac{1}{3\sqrt{95}}.$$

в) Площадь грани $A_1A_2A_3$ вычисляем как площадь треугольника, построенного на векторах $\overrightarrow{A_1A_2}$, $\overrightarrow{A_1A_3}$ (формула (2.2)): $S_{A_1A_2A_3}=\frac{1}{2}\left[\overrightarrow{A_1A_2}, \overrightarrow{A_1A_3}\right]$. Имеем $\overrightarrow{A_1A_2}=\left(-5;2;-4\right)$, $\overrightarrow{A_1A_3}=\left(-6;-8;-5\right)$,

$$\begin{bmatrix} \overrightarrow{A_1} \overrightarrow{A_2}, & \overrightarrow{A_1} \overrightarrow{A_3} \end{bmatrix} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -5 & 2 & -4 \\ -6 & -8 & -5 \end{vmatrix} = \begin{vmatrix} 2 & -4 \\ -8 & -5 \end{vmatrix} \cdot \overrightarrow{i} - \begin{vmatrix} -5 & -4 \\ -6 & -5 \end{vmatrix} \cdot \overrightarrow{j} + \begin{vmatrix} -5 & 2 \\ -6 & -8 \end{vmatrix} \cdot \overrightarrow{k} = -42\overrightarrow{i} - \overrightarrow{j} + 52\overrightarrow{k}.$$

$$S = \frac{1}{2}\sqrt{(-42)^2 + (-1)^2 + 52^2} = \frac{1}{2}\sqrt{4469} \text{ egg}^2.$$

г) Объем пирамиды найдем по формуле (2.3):
$$V = \frac{1}{6} \left| \overrightarrow{A_1} \overrightarrow{A_2} \cdot \overrightarrow{A_1} \overrightarrow{A_3} \cdot \overrightarrow{A_1} \overrightarrow{A_4} \right|$$
.

Имеем
$$\overrightarrow{A_1 A_2} \cdot \overrightarrow{A_1 A_3} \cdot \overrightarrow{A_1 A_4} = \begin{vmatrix} -5 & 2 & -4 \\ -6 & -8 & -5 \\ 2 & -6 & -6 \end{vmatrix} = -390$$
.

Отсюда
$$V = \frac{1}{6} |-390| = 65 \ (e\partial^3).$$

д) Уравнения прямой A_1A_2 найдем по формуле (2.8):

$$\frac{x-3}{5-3} = \frac{y-4}{-2-4} = \frac{z-5}{-1-5}$$
 или
$$\frac{x-3}{2} = \frac{y-4}{-6} = \frac{z-5}{-6}.$$

е) Уравнение плоскости $A_1A_2A_3$ определяем по формуле (2.6):

$$\begin{vmatrix} x-3 & y-4 & z-5 \\ -2-3 & 6-4 & 1-5 \\ -3-3 & -4-4 & 0-5 \end{vmatrix} = 0 \quad \text{или} \quad \begin{vmatrix} x-3 & y-4 & z-5 \\ -5 & 2 & -4 \\ -6 & -8 & -5 \end{vmatrix} = 0.$$

Отсюда

$$\begin{vmatrix} 2 & -4 \\ -8 & -5 \end{vmatrix} \cdot (x-3) - \begin{vmatrix} -5 & -4 \\ -6 & -5 \end{vmatrix} \cdot (y-4) + \begin{vmatrix} -5 & 2 \\ -6 & -8 \end{vmatrix} \cdot (z-5) = 0,$$

$$-42(x-3)-(y-4)+52(z-5)=0, -42x+126-y+4+52z-260=0,$$

$$42x+y-52z+130=0.$$

ж) Угол между ребром A_1A_4 и гранью $A_1A_2A_3$ находим как угол между прямой A_1A_4 и плоскостью $A_1A_2A_3$ по формуле (2.9). В нашем случае $\vec{s} = \overrightarrow{A_1A_4} = (2; -6; -6), \ \vec{n} = (42; 1; -52).$ Тогда

$$\sin \varphi = \frac{\left|42 \cdot 2 + 1 \cdot \left(-6\right) + \left(-52\right) \cdot \left(-6\right)\right|}{\sqrt{2^2 + \left(-6\right)^2 + \left(-6\right)^2} \sqrt{42^2 + 1^2 + \left(-52\right)^2}} = \frac{\left|84 - 6 + 312\right|}{\sqrt{76} \cdot \sqrt{4469}} = \frac{390}{2\sqrt{19} \cdot \sqrt{4469}}.$$

и) Уравнение высоты, опущенной из вершины A_4 на грань $A_1A_2A_3$, определяем как уравнение прямой, проходящей через $A_4(5;-2;-1)$ перпендикулярно плоскости $A_1A_2A_3$. Уравнение плоскости $A_1A_2A_3$:

$$42x+y-52z+130=0$$
. Тогда имеем $\vec{s}=(42;1;-52)$. По формуле (2.7) получаем $\frac{x-5}{42}=\frac{y+2}{1}=\frac{z+1}{-52}$.

Задание 3. Даны координаты $A_1(x_1, y_1, z_1)$, $A_2(x_2, y_2, z_2)$, $A_3(x_3, y_3, z_3)$, $A_4(x_4, y_4, z_4)$ вершин пирамиды. Найти: 1) длину ребра A_1A_2 ; 2) угол между ребрами A_1A_2 и A_1A_4 ; 3) угол между ребром A_1A_4 и гранью $A_1A_2A_3$; 4) площадь грани $A_1A_2A_3$; 5) объем пирамиды; 6) уравнение высоты, опущенной из вершины A_4 на грань $A_1A_2A_3$; 7) уравнение плоскости α , проходящей через высоту пирамиды, опущенную из вершины A_4 на грань $A_1A_2A_3$ и вершину A_1 пирамиды; 8) расстояние от вершины A_3 до плоскости α .

- 3.1. $A_1(7; 1; 2)$, $A_2(-5; 3; -2)$, $A_3(3; 3; 5)$, $A_4(4; 5; -1)$.
- 3.2. $A_1(-2; 3; -2), A_2(2; -3; 2), A_3(2; 2; 0), A_4(1; 5; 5).$
- 3.3. $A_1(3; 1; 1)$, $A_2(2; 4; 1)$, $A_3(1; 1; 7)$, $A_4(3; 4; -1)$.
- 3.4. $A_1(4; -3; -2), A_2(2; 2; 3), A_3(2; -2; -3), A_4(-1; -2; 3).$
- 3.5. $A_1(5; 1; 0), A_2(7; 0; 1), A_3(2; 1; 4), A_4(5; 5; 3).$
- 3.6. $A_1(4; 2; -1), A_2(3; 0; 4), A_3(0; 0; 4), A_4(5; -1; 3).$
- 3.7. $A_1(0; 1; 2), A_2(3; 0; 5), A_3(1; 1; 2), A_4(4; 1; 2).$
- 3.8. $A_1(4; 1; -2)$, $A_2(1; 2; 1)$, $A_3(3; 0; 5)$, $A_4(1; 1; 0)$.
- 3.9. $A_1(1; 1; 2)$, $A_2(2; 1; 3)$, $A_3(0; 2; 1)$, $A_4(5; 1; 3)$.
- 3.10. $A_1(3; 1; 0)$, $A_2(0; 7; 2)$, $A_3(-1; 0; -5)$, $A_4(4; 1; 5)$.
- 3.11. $A_1(1; -1; 1), A_2(0; 2; 4), A_3(1; 3; 3), A_4(5; 2; 3).$
- 3.12. $A_1(1; -1; 2)$, $A_2(2; 1; 1)$, $A_3(7; 1; 2)$, $A_4(4; 2; -3)$.
- 3.13. $A_1(1; -3; 1)$, $A_2(4; 1; 0)$, $A_3(1; 0; -5)$, $A_4(5; 2; 1)$.
- 3.14. $A_1(3; 2; 1), A_2(5; 4; 0), A_3(2; -1; 4), A_4(2; 2; 3).$
- 3.15. $A_1(2; 1; 1)$, $A_2(-4; 0; 2)$, $A_3(3; 1; 1)$, $A_4(5; 2; 2)$.
- 3.16. $A_1(1; 0; 1), A_2(3; 2; 1), A_3(-3; 1; -1), A_4(0; 1; 5).$
- 3.17. $A_1(2; 2; 3), A_2(2; -1; 1), A_3(0; 2; 2), A_4(5; 1; 3).$
- 3.18. $A_1(2; 1; -3), A_2(3; 1; -2), A_3(7; 0; 1), A_4(3; -2; 0).$
- 3.19. $A_1(3; 3; 9), A_2(6; 9; 0), A_3(1; 7; 4), A_4(8; 5; 7).$
- 3.20. $A_1(3; 5; 4), A_2(5; 8; 2), A_3(1; 9; 7), A_4(6; 4; 3).$
- 3.21. $A_1(2; 4; 3), A_2(7; 6; 2), A_3(4; 9; 1), A_4(3; 6; 8).$
- 3.22. $A_1(0; 7; 1), A_2(4; 1; 4), A_3(4; 6; 3), A_4(6; 9; 1).$
- 3.23. $A_1(5; 5; 3), A_2(3; 8; 1), A_3(3; 5; 8), A_4(5; 8; 1).$
- 3.24. $A_1(6; 1; 1), A_2(4; 6; 8), A_3(3; 5; 10), A_4(1; 2; 8).$

- 3.25. $A_1(7; 0; 3), A_2(9; 4; 3), A_3(4; 5; 0), A_4(-2; 0; -4).$
- 3.26. $A_1(0; 0; 2), A_2(9; 3; 1), A_3(5; 7; 2), A_4(3; 6; 1).$
- 3.27. $A_1(1; -3; 1), A_2(7; 6; 0), A_3(4; 2; 0), A_4(1; 2; 0).$
- 3.28. $A_1(0; 0; 1), A_2(-2; 11; -5), A_3(1; 2; 4), A_4(0; 6; 4).$
- 3.29. $A_1(3; 2; 2), A_2(1; 2; 1), A_3(2; 0; 3), A_4(4; 1; 5).$
- 3.30. $A_1(3; 5; 3), A_2(0; 7; 2), A_3(1; 1; 4), A_4(3; 2; 1).$

Тема 3. ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

- 1. Понятие числовой последовательности и ее предела.
- 2. Предел функции в точке. Основные теоремы о пределе суммы, произведения и частного.
 - 3. Замечательные пределы.
 - 4. Непрерывность функции в точке. Точки разрыва и их классификация.
 - 5. Понятие производной, ее геометрический смысл.
 - б. Производная суммы, произведения, частного.
 - 7. Дифференциал и его геометрический смысл.
 - 8. Производная функции, заданной неявно и параметрически.
 - 9. Производные и дифференциалы высших порядков.
 - 10. Возрастание и убывание графика функции. Экстремум.
 - 11. Выпуклость и вогнутость функции. Точки перегиба.
 - 12. Наибольшее и наименьшее значения функции на отрезке.

3.1. Предел функции. Основные способы вычисления пределов

Число A называют **пределом функции** y = f(x) при $x \to a$ (или в точке a), если для любого числа $\varepsilon > 0$ существует такое число $\delta(\varepsilon) > 0$, что при всех x, удовлетворяющих условию $0 < |x-a| < \delta$, выполняется неравенство $|f(x) - A| < \varepsilon$.

Обозначают предел $\lim_{x\to a} f(x) = A$.

Если функции f(x) и g(x) имеют пределы в точке x = a, то:

$$\lim_{x\to a}(f(x)\pm g(x))=\lim_{x\to a}f(x)\pm\lim_{x\to a}g(x),$$

$$\lim_{x \to a} (f(x) \cdot g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x),$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \quad \lim_{x \to a} g(x) \neq 0.$$

Функция y = f(x) называется **бесконечно малой** в точке x = a, если ее предел в этой точке равен нулю: $\lim_{x \to a} f(x) = 0$.

Функция y = f(x) называется **бесконечно большой** в точке x = a, если для любого числа M > 0 существует такое число $\delta(M) > 0$, что для всех x, удовлетворяющих неравенству $0 < |x-a| < \delta$, выполняется неравенство |f(x)| > M. При этом записывают $\lim_{x \to a} f(x) = \infty$.

При нахождении предела $\lim_{x\to a} \frac{f(x)}{g(x)}$ в случае, когда f(x) и g(x) являются бесконечно малыми (бесконечно большими) функциями в точке x=a, говорят, что отношение $\frac{f(x)}{g(x)}$ при $x\to a$ представляет собой

неопределенность вида $\frac{0}{0}$ $\left(\frac{\infty}{\infty}\right)$.

Аналогично вводятся неопределенности вида $\infty - \infty$, $0 \cdot \infty$, 1^{∞} , 0^{0} , ∞^{0} , которые встречаются при нахождении соответственно пределов $\lim_{x \to a} (f(x) - g(x))$, $\lim_{x \to a} (f(x) \cdot g(x))$ и $\lim_{x \to a} (f(x))^{g(x)}$. Отыскание предела в таких случаях называют раскрытием неопределенности.

При решении задач используют:

а) первый замечательный предел:

$$\lim_{\alpha(x)\to 0} \frac{\sin\alpha(x)}{\alpha(x)} = 1;$$

б) второй замечательный предел:

$$\lim_{\alpha(x)\to 0} (1+\alpha(x))^{\frac{1}{\alpha(x)}} = e^{-\frac{1}{\alpha(x)}}$$

или

$$\lim_{x\to\infty} \left(1 + \frac{1}{x}\right)^x = e;$$

в) некоторые важные пределы:

$$\lim_{\alpha(x)\to 0} \frac{a^{\alpha(x)} - 1}{\alpha(x)} = \ln \alpha, \qquad \lim_{\alpha(x)\to 0} \frac{\ln(1 + \alpha(x))}{\alpha(x)} = 1,$$

$$\lim_{\alpha(x)\to 0} \frac{e^{\alpha(x)} - 1}{\alpha(x)} = 1, \qquad \lim_{\alpha(x)\to 0} \frac{(1 + \alpha(x))^p - 1}{\alpha(x)} = p.$$

г) эквивалентность бесконечно малых функций.

Пусть $\alpha(x)$ и $\beta(x)$ бесконечно малые функции в точке x = a.

Если $\lim_{x\to a} \frac{\alpha(x)}{\beta(x)} = 1$, то $\alpha(x)$ и $\beta(x)$ называются эквивалентными бесконечно малыми функциями, что обозначается так: $\alpha(x) \sim \beta(x)$.

Теорема. Предел отношения двух бесконечно малых функций при $x \to a$ не изменится, если каждую из них или только одну заменить другой эквивалентной бесконечно малой функцией.

При замене бесконечно малой функции эквивалентной используют таблицу эквивалентных бесконечно малых функций при $x \rightarrow a$:

1.
$$\sin \alpha(x) \sim \alpha(x)$$
;

1.
$$\sin \alpha(x) \sim \alpha(x)$$
; 2. $\arcsin \alpha(x) \sim \alpha(x)$;

3.
$$tg\alpha(x)\sim\alpha(x)$$
;

4.
$$\arctan(x) \sim \alpha(x)$$
; 5. $\ln(1 + \alpha(x)) \sim \alpha(x)$; 6. $e^{\alpha(x)} - 1 \sim \alpha(x)$.

5.
$$\ln(1+\alpha(x))\sim\alpha(x)$$
;

$$6.e^{\alpha(x)}-1\sim\alpha(x)$$

Рассмотрим основные методы раскрытия неопределенностей $\frac{0}{0}$, $\frac{\infty}{100}$.

Пример 3.1. Вычислить
$$\lim_{x \to \infty} \frac{2x^4 - 5x^3 + 4x^2 - 7}{x^4 + 6x^2 - 8}$$
.

Решение. Имеем неопределенность $\stackrel{\infty}{-}$.

Преобразуем выражение под знаком предела:

$$\lim_{x \to \infty} \frac{x^4 \left(2 - \frac{5}{x} + \frac{4}{x^2} - \frac{7}{x^4}\right)}{x^4 \left(1 + \frac{6}{x^2} - \frac{8}{x^4}\right)} = 2.$$

Пример 3.2. Вычислить
$$\lim_{x \to \infty} \frac{\sqrt[3]{x^2 + x}}{x + 1} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{x \cdot \sqrt[3]{\frac{1}{x} + \frac{1}{x^2}}}{x\left(1 + \frac{1}{x}\right)} = 0.$$

Пример 3.3.Вычислить
$$\lim_{x\to 2} \frac{x^2 - x - 2}{x^3 - 12x + 16}.$$

Решение. Имеем неопределенность $\frac{0}{0}$. Выделим в числителе и в знаменателе одинаковый множитель x-2. Для этого разложим числитель и знаменатель на сомножители. Имеем:

$$\lim_{x \to 2} \frac{x^2 - x - 2}{x^3 - 12x + 16} = \left(\frac{0}{0}\right) = \lim_{x \to 2} \frac{(x - 2)(x + 1)}{(x - 2)^2(x + 4)} = \lim_{x \to 2} \frac{x + 1}{(x - 2)(x + 4)} = \frac{3}{0} = \infty.$$

Пример 3.4.Вычислить $\lim_{x\to 0} \frac{\sqrt{x+4}-2}{5x}$.

Решение. Имеем неопределенность $\frac{0}{0}$. Умножаем числитель и знаменатель на сопряженное выражение $\sqrt{x+4}+2$:

$$\lim_{x\to 0} \frac{\left(\sqrt{x+4}-2\right)\!\left(\sqrt{x+4}+2\right)}{5x\!\left(\sqrt{x+4}+2\right)} = \lim_{x\to 0} \frac{x+4-4}{5x\!\left(\sqrt{x+4}+2\right)} = \lim_{x\to 0} \frac{1}{5\left(\sqrt{x+4}+2\right)} = \frac{1}{20}.$$

Пример 3.5. Вычислить $\lim_{x\to 2} \frac{\sin(x-2)}{x^2-4}$.

Решение. Имеем неопределенность $\frac{0}{0}$. Используем первый замечательный передел. В нашем случае $\lim_{x\to 2} \frac{\sin(x-2)}{x-2} = 1$, $(\alpha(x) = x-2 \to 0)$.

Следовательно, получаем
$$\lim_{x \to 2} \frac{\sin(x-2)}{(x-2)(x+2)} = \lim_{x \to 2} \frac{1}{x+2} = \frac{1}{4}.$$

Пример 3.6. Вычислить $\lim_{x\to 5} \frac{\arctan(x-5)}{2x-10}$.

Решение. Имеем неопределенность $\frac{0}{0}$. Заменим бесконечно малую функцию $\arctan(x-5)$ при $x \to 5$ эквивалентной бесконечно малой функцией $\alpha(x) = x - 5$. Получаем

$$\lim_{x \to 5} \frac{\arctan(x-5)}{2x-10} = \left(\frac{0}{0}\right) = \left|\arctan(x-5) \sim x-5\right| = \lim_{x \to 5} \frac{x-5}{2(x-5)} = \frac{1}{2}.$$

Неопределенности вида $\infty-\infty$ и $0\cdot\infty$ преобразуются к неопределенности вида $\frac{0}{0}$ $\left(\frac{\infty}{\infty}\right)$.

Пример 3.7. Вычислить
$$\lim_{x\to 1} \left(\frac{1}{1-x} - \frac{2}{1-x^2} \right)$$
.

Решение. Имеем неопределенность вида $\infty - \infty$. Приведем две дроби к общему знаменателю:

$$\lim_{x \to 1} \left(\frac{1}{1 - x} - \frac{2}{1 - x^2} \right) = (\infty - \infty) = \lim_{x \to 1} \frac{1 + x - 2}{1 - x^2} = \lim_{x \to 1} \frac{x - 1}{1 - x^2} = \left(\frac{0}{0} \right) = \lim_{x \to 1} \frac{x - 1}{-(x - 1)(x + 1)} = \lim_{x \to 1} \frac{1}{x + 1} = -\frac{1}{2}.$$

Пример 3.8. Вычислить $\lim_{x \to \frac{\pi}{2}} \left(\frac{\pi}{2} - x \right) \operatorname{tg} x$.

Решение. Имеем неопределенность вида $0\cdot\infty$. Преобразуем выражение:

$$\lim_{x \to \frac{\pi}{2}} \left(\frac{\pi}{2} - x \right) \operatorname{tg} x = (0 \cdot \infty) = \lim_{x \to \frac{\pi}{2}} \frac{\frac{\pi}{2} - x}{\operatorname{ctg} x} = \left(\frac{0}{0} \right) = \lim_{x \to \frac{\pi}{2}} \frac{\frac{\pi}{2} - x}{\operatorname{tg} \left(\frac{\pi}{2} - x \right)} = \left(\frac{0}{0} \right) = \lim_{x \to \frac{\pi}{2}} \frac{\frac{\pi}{2} - x}{\operatorname{tg} \left(\frac{\pi}{2} - x \right)} = \left(\frac{0}{0} \right) = \lim_{x \to \frac{\pi}{2}} \frac{\frac{\pi}{2} - x}{\operatorname{tg} \left(\frac{\pi}{2} - x \right)} = \left(\frac{0}{0} \right) = \lim_{x \to \frac{\pi}{2}} \frac{\frac{\pi}{2} - x}{\operatorname{tg} \left(\frac{\pi}{2} - x \right)} = \left(\frac{0}{0} \right) = \lim_{x \to \frac{\pi}{2}} \frac{\frac{\pi}{2} - x}{\operatorname{tg} \left(\frac{\pi}{2} - x \right)} = \left(\frac{0}{0} \right) = \lim_{x \to \frac{\pi}{2}} \frac{\pi}{2} - x$$

Для раскрытия неопределенности вида 1^{∞} применяют второй замечательный предел. Пусть $\lim_{x\to a} f(x) = 1$, а $\lim_{x\to a} g(x) = \infty$. Тогда имеем

$$\lim_{x \to a} (f(x))^{g(x)} = (1^{\infty}) = \lim_{x \to a} \left[(1 + (f(x) - 1)) \frac{1}{f(x) - 1} \right]^{(f(x) - 1) \cdot g(x)} = e^{\lim_{x \to a} (f(x) - 1) \cdot g(x)}.$$

Приходим к неопределенности вида $0 \cdot \infty$.

Пример 3.9. Вычислить

$$\lim_{x\to 2} (2x-3)^{\frac{x}{x-2}} = (1^{\infty}) = \lim_{x\to 2} \left[(1+(2x-4))^{\frac{1}{2x-4}} \right]^{\frac{(2x-4)\cdot x}{x-2}} = e^{\lim_{x\to 2} \frac{2(x-2)\cdot x}{x-2}} = e^{\lim_{x\to 1} 2x} = e^{4}.$$

Пример 3.10. Вычислить

$$\lim_{x \to \infty} \left(\frac{x^2 + 4}{x^2 - 5} \right)^{3x} = (1^{\infty}) = \lim_{x \to \infty} \left(\frac{x^2 - 5 + 9}{x^2 - 5} \right)^{3x} = \lim_{x \to \infty} \left(1 + \frac{9}{x^2 - 5} \right)^{3x} = \lim_{x \to \infty} \left(1 +$$

Производной функции y = f(x) в точке x_0 называется предел отношения приращения функции к приращению аргумента при условии, что приращение аргумента стремится к нулю:

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
.

Операция нахождения производной называется дифференцированием.

Если функции u = u(x) и v = v(x) и имеют производные в некоторой точке x , то **основные правила дифференцирования** выражаются формулами:

$$(cu)' = c \cdot u'; \qquad \left(\frac{u}{c}\right)' = \frac{u'}{c} \qquad (c = \text{const});$$

$$(u+v)' = u'+v'; \qquad (u\cdot v)' = u'\cdot v + v'u; \qquad \left(\frac{u}{v}\right)' = \frac{u'\cdot v - v'\cdot u}{v^2}, \quad v \neq 0.$$

Таблица основных производных

Правило дифференцирования сложной функции

Если y = f(u) и u = g(x) — дифференцируемые функции своих аргументов, то производная функции от функции (или сложной функции) $y = f(\varphi(x))$ существует и равна произведению производной данной функции y по промежуточному аргументу и производной промежуточного аргумента u по независимой переменной x:

$$y_x' = y_u' \cdot u_x'.$$
 Пример 3.11. Найти производную функции $y = \sin^3\left(\frac{x}{3}\right).$

Это сложная степенная функция, аргумент которой является сложной тригонометрической функцией.

Первый промежуточный аргумент $u = \sin z$, второй $z = \frac{x}{3}$.

Так как
$$y'_u = (u^3)' = 3u^2 = 3\sin^2\frac{x}{3}$$
, $u'_z = (\sin z)' = \cos z = \cos\frac{x}{3}$,

$$z'_{x} = \left(\frac{x}{3}\right)' = \frac{1}{3}$$
, To $\left(\sin^{3}\frac{x}{3}\right)' = 3\sin^{2}\frac{x}{3} \cdot \cos\frac{x}{3} \cdot \frac{1}{3} = \sin^{2}\frac{x}{3} \cdot \cos\frac{x}{3}$.

Дифференцирование неявных функций

Пусть функция y = y(x) задана уравнением F(x, y) = 0. В этом случае говорят, что функция y задана неявно.

Производная y' = y'(x) может быть найдена из уравнения $F'_x = 0$, где F = F(x, y) рассматривается как сложная функция от переменной x.

Пример 3.12. Найти производную функции $x^3 - 4xy + 3y^2 - 2 = 0$, заданной неявно.

Дифференцируем это равенство по x, считая, что y — функция от x:

$$3x^3 - 4y - 4x \cdot y' + 6y \cdot y' = 0$$
. Отсюда $y' = \frac{4y - 3x^2}{6y - 4x}$.

Дифференцирование функций, заданных параметрически

Пусть функция y = y(x) задана параметрически: $x = x(t), y = y(t), t \in T$. Пусть x(t) и y(t) - дифференцируемые функции и $x'(t) \neq 0$. Тогда имеем:

$$y_x' = \frac{y_t'}{x_t'} \tag{3.1}$$

Пример 3.13. Найти производную функции $\begin{cases} x = \sin^2 t \\ y = \cos t \end{cases}$

Решение. Находим $x'_t = \left(\sin^2 t\right)' = 2\sin t \cdot \cos t$, $y'_t = \left(\cos t\right)' = -\sin t$. Тогда по формуле (3.1) получаем

$$y'_{x} = \frac{y'_{t}}{x'_{t}} = \frac{-\sin t}{2\sin t \cos t} = \frac{-1}{2\cos t}.$$

· Дифференцирование степенно-показательной функции

Пусть $y = u(x)^{v(x)}$, где u(x) > 0, u(x) и v(x) — дифференцируемые функции по x.

Производная степенно-показательной функции находится с помощью предварительного логарифмирования.

Пример 3.14. Найти производную функции $y = (\operatorname{arcctg} x)^{x^2}$

Логарифмируем данное равенство по основанию e:

$$\ln y = x^2 \cdot \ln(\operatorname{arcctg} x).$$

Дифференцируя обе части последнего равенства по x как сложную функцию получаем:

$$\frac{1}{y} \cdot y' = 2x \cdot \ln(\operatorname{arcctg} x) + x^2 \cdot \frac{1}{\operatorname{arcctg} x} \left(-\frac{1}{1+x^2} \right).$$

Откуда находим

$$y' = y \cdot \left(2x \cdot \ln(\operatorname{arcctg} x) - \frac{x^2}{\operatorname{arcctg} x(1+x^2)}\right),$$

или

$$y' = (\operatorname{arcctg} x)^{x^2} \cdot \left(2x \cdot \ln(\operatorname{arcctg} x) - \frac{x^2}{\operatorname{arcctg} x(1+x^2)}\right).$$

3.2. Производные высших порядков

Производной второго порядка функции y = f(x) называется производная от ее производной y' = f'(x) (которую называют первой производной).

Рассмотрим функцию y=y(x) заданную параметрически: $x=x(t),\ y=y(t),\ t\in T$. Имеем $y_x'=\frac{y_t'}{x_t'}$. Тогда по формуле (3.1) получаем

$$y_{xx}'' = \frac{(y_x')_t'}{x_x'} \tag{3.2}$$

Пример 3.15. Найти
$$y''_{xx}$$
, если $\begin{cases} x = a(t - \sin t); \\ y = a(1 - \cos t). \end{cases}$

Решение. Находим $x'_t = a(1-\cos t), \ y'_t = a \cdot \sin t$. По формуле (3.1) получаем

$$y'_{x} = \frac{y'_{t}}{x'_{t}} = \frac{a \sin t}{a(1 - \cos t)} = \frac{\sin t}{1 - \cos t}.$$

Находим

$$(y'_x)'_t = \left(\frac{\sin t}{1 - \cos t}\right)' = \frac{\cos t(1 - \cos t) - \sin t \cdot \sin t}{(1 - \cos t)^2} = \frac{\cos t - (\cos^2 t + \sin^2 t)}{(1 - \cos t)^2} = \frac{\cos t - 1}{(\cos t - 1)^2} = \frac{1}{\cos t - 1}.$$

По формуле (3.2) получаем

$$y''_{xx} = \frac{(y'_x)'_t}{x'_t} = \frac{\frac{1}{\cos t - 1}}{a(1 - \cos t)} = \frac{1}{a(1 - \cos t)^2}.$$

3.3. Исследование функций и построение графиков

Если для двух любых значений аргумента x_1 и x_2 ($x_1 \neq x_2$), взятых из области определения функции, из неравенства $x_1 < x_2$ следует, что

- а) $f(x_1) < f(x_2)$, то функция называется возрастающей;
- б) $f(x_1) \le f(x_2)$, то функция называется **неубывающей**;
- в) $f(x_1) > f(x_2)$, то функция называется убывающей;
- г) $f(x_1) \ge f(x_2)$, то функция называется **невозрастающей**.

Возрастающие, неубывающие, убывающие и невозрастающие функции называются **монотонными**. Возрастающие и убывающие функции называются **строго монотонными**.

Признак монотонности и строгой монотонности функции. Функция f(x), дифференцируемая на (a;b), возрастает (убывает) на (a;b) тогда и только тогда, когда $f'(x) \ge 0$ ($f'(x) \le 0$) $\forall x \in (a;b)$; если при этом не существует интервала $(\alpha;\beta) \subset (a;b)$, такого, что f'(x) = 0 $\forall x \in (\alpha;\beta)$, то f(x) строго возрастает (убывает) на (a;b).

Значение $f(x_0)$ называется локальным максимумом (минимумом) функции f(x), если существует такая δ — окрестность точки x_0 , что $\forall x \in (x_0 - \delta; x_0 + \delta)$ и $x \neq x_0$ выполняется неравенство $f(x) < f(x_0)$ ($f(x) > f(x_0)$).

Локальный максимум и локальный минимум объединяются общим названием **локальный экстремум**.

Необходимое условие экстремума: если функция f(x) в точке x_0 имеет локальный экстремум, то ее производная в этой точке равна нулю или не существует.

Внутренние точки множества D(f), в которых f(x) непрерывна, а ее производная f'(x) равна нулю или не существует, называются критическими точками функции f(x).

Первое достаточное условие локального экстремума. Если функция f(x) дифференцируема в некоторой δ — окрестности критической точки x_0 , кроме, может быть самой точки x_0 , а f'(x)>0 (f'(x)<0) при $x_0-\delta < x < x_0$, и f'(x)<0 (f'(x)>0) при $x_0< x < x_0+\delta$, то в точке x_0 функция имеет локальный максимум (минимум).

Второе достаточное условие локального экстремума. Если в критической точке x_0 функция f(x) дважды дифференцируема и $f''(x_0) < 0$ ($f''(x_0) > 0$), то в этой точке функция f(x) имеет локальный максимум (минимум).

График дифференцируемой функции y = f(x) называется выпуклым (вогнутым) на (a; b), если он на этом интервале расположен ниже (выше) касательной, проведенной в любой его точке M(x; f(x)), где $x \in (a; b)$.

Если функция f(x) в интервале (a;b) дважды дифференцируема и f''(x) < 0 (f''(x) > 0) $\forall x \in (a;b)$, то график функции в этом интервале выпуклый (вогнутый).

Точка $M_{\scriptscriptstyle 0}$ графика непрерывной функции, отделяющая его выпуклую (вогнутую) часть от вогнутой (выпуклой), называется точкой перегиба.

Достаточное условие существования точки перегиба. Если вторая производная f''(x) функции f(x) в точке x_0 равна нулю или не существует и меняет знак при переходе через эту точку, то $M_0(x_0; f(x_0))$ — точка перегиба графика функции y = f(x).

Асимптотой кривой называется прямая, к которой неограниченно приближается точка этой кривой при неограниченном удалении от начала координат.

Различают вертикальные и невертикальные асимптоты. Прямая x=a называется **вертикальной асимптотой** графика функции, если хотя бы один из односторонних пределов функции y=f(x) в точке a равен бесконечности: $\lim_{x\to a-0} f(x) = \infty$ или $\lim_{x\to a+0} f(x) = \infty$.

Прямая y = kx + b ($k \neq 0$) называется **наклонной асимптотой** графика функции y = f(x) при $x \to +\infty$ ($x \to -\infty$), если функцию f(x) можно представить в виде $f(x) = kx + b + \alpha(x)$, где $\alpha(x)$ — бесконечно малая функция при $x \to +\infty$ ($x \to -\infty$).

Если существуют пределы:
$$\lim_{\substack{x\to +\infty\\ (x\to -\infty)}} \frac{f(x)}{x} = k$$
 , $\lim_{\substack{x\to +\infty\\ (x\to -\infty)}} (f(x)-kx) = b$,

то уравнение y = kx + b определяет наклонную асимптоту.

Если k = 0, то y = b — горизонтальная асимптота.

Построение графика функции

Исследование функции и построение ее графика можно проводить по следующей схеме:

- 1. Найти область определения функции.
- 2. Исследовать функцию на четность (нечетность) и периодичность. Найти точки пересечения графика с осями координат.
 - 3. Найти точки разрыва функции и асимптоты кривой.
- 4. Определить интервалы монотонности и локальные экстремумы функции.
- 5. Найти интервалы выпуклости и вогнутости и точки перегиба графика функции.
 - 6. Построить график функции.

Пример 3.16. Исследовать функцию $f(x) = \frac{x^2 + 1}{x - 1}$ и построить ее график.

Решение. 1. Находим область определения $D(y) = (-\infty; 1) \cup (1; +\infty)$.

2. Поскольку $f(-x) \neq -f(x)$, $f(x+T) \neq f(x)$, то функция не является четной, нечетной и периодической.

Находим точки пересечения с осями координат:

- а) так как $y = \frac{x^2 + 1}{x 1} \neq 0$, то график функции не пересекает ось Ox;
- б) при x = 0 график функции пересекает ось Oy в точке y = -1.
- 3. Функция не определена в точке x = 1. Поскольку $\lim_{x \to 1-0} \frac{x^2 + 1}{x 1} = -\infty$,

 $\lim_{x\to 1+0} \frac{x^2+1}{x-1} = +\infty$, то x=1 — точка разрыва второго рода. Так как $\lim_{x\to 1+0} f(x) = \pm \infty$, то прямая x=1 есть вертикальная асимптота.

Далее находим

$$k = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^2 + 1}{x(x - 1)} = 1,$$

$$b = \lim_{x \to \infty} (y - kx) = \lim_{x \to \infty} \left(\frac{x^2 + 1}{x - 1} - x \right) = \lim_{x \to \infty} \frac{x + 1}{x - 1} = 1.$$

Следовательно, прямая y = x + 1 есть наклонная асимптота.

4. Вычислим
$$y' = \frac{2x(x-1)-x^2-1}{(x-1)^2} = \frac{x^2-2x-1}{(x-1)^2}$$
.

Первая производная не существует в точке x = 1, которая не принадлежит области определения D(y) и, следовательно, не является критической точкой.

При y'=0 получаем $x^2-2x-1=0$ или $x_1=1-\sqrt{2}$, $x_2=1+\sqrt{2}$ Точки x_1 и x_2 являются критическими (стационарными) точками.

Определим интервалы монотонности из неравенств y' > 0 и $y' < 0 \ \forall x \in D(y)$:

$$\frac{x^2 - 2x - 1}{(x - 1)^2} > 0 \text{ при } x \in \left(-\infty; 1 - \sqrt{2}\right) \cup \left(1 + \sqrt{2}; +\infty\right);$$

$$\frac{x^2 - 2x - 1}{(x - 1)^2} < 0 \text{ при } x \in \left(1 - \sqrt{2}; 1 + \sqrt{2}\right).$$

Следовательно, функция возрастает при $x \in \left(-\infty; 1-\sqrt{2}\right) \cup \left(1+\sqrt{2}; +\infty\right)$ и убывает при $x \in \left(1-\sqrt{2}; 1+\sqrt{2}\right)$.

В точке $x=1-\sqrt{2}$ функция имеет максимум $y_{\max}=y\Big(1-\sqrt{2}\Big)=$ = $-2\sqrt{2}+2\approx -0.83$.

В точке $x=1+\sqrt{2}$ функция имеет минимум $y_{\min}=y\Big(1+\sqrt{2}\Big)=$ $=2\sqrt{2}+2\approx 4.83$.

5. Находим

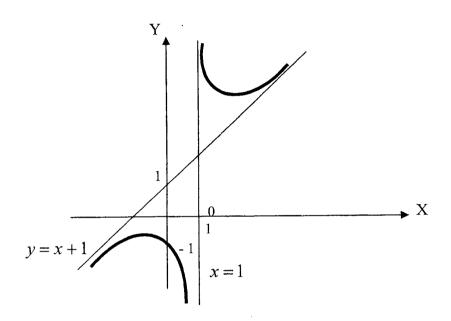
$$y'' = \left(\frac{x^2 - 2x - 1}{(x - 1)^2}\right)' = \frac{(2x - 2)(x - 1)^2 - 2(x - 1)(x^2 - 2x - 1)}{(x - 1)^4} = \frac{(x - 1)(2x^2 - 4x + 2 - 2x^2 + 4x + 2)}{(x - 1)^4} = \frac{4}{(x - 1)^3}.$$

Определяем интервалы выпуклости и вогнутости графика функции из неравенств y''>0, y''<0, $\forall x\in D(y)$. Имеем y''>0 при $x\in (1;+\infty)$, y''<0 при $x\in (-\infty;1)$. Следовательно, кривая выпукла на $(-\infty;1)$ и вогнута на $(1;+\infty)$. Так как x=1 не принадлежит области определения функции и $y''\neq 0$, $\forall x\in D(y)$, то точек перегиба нет.

Результаты исследования функции y = f(x) заносим в таблицу.

X	$(-\infty;1-\sqrt{2})$	$1-\sqrt{2}$	$(1-\sqrt{2};1)$	1	$(1;1+\sqrt{2})$	$1+\sqrt{2}$	$(1+\sqrt{2};+\infty)$
<i>y'</i>	+	0	_	не	_	0	+
}				сущ.			
<i>y</i> "	_			не	+	+	+
				сущ.			
y	7	- 0,83	7	не	7	4,83	7
		max		сущ.		min	

6. Исходя из результатов таблицы строим график данной функции.



Задание 4. Вычислить пределы функций, не пользуясь правилом Лопиталя-Бернулли.

4.1. a)
$$\lim_{x \to -1} \frac{3x(x-1)}{4(x^2-1)}$$
, 6) $\lim_{x \to 0} \frac{1-\cos 5x}{5x^2}$, B) $\lim_{x \to \infty} \left(1+\frac{7}{x}\right)^{10x}$.

6)
$$\lim_{x\to 0} \frac{1-\cos 5x}{5x^2}$$
,

$$B) \lim_{x\to\infty} \left(1+\frac{7}{x}\right)^{10x}.$$

4.2. a)
$$\lim_{x \to \infty} \frac{(x+1)^2}{3x^2 + 10x - 8}$$
, 6) $\lim_{x \to 0} \frac{1 - \cos 10x}{8x^2}$, B) $\lim_{x \to 3} (10 - 3x)^{\frac{4}{x}}$.

6)
$$\lim_{x\to 0} \frac{1-\cos 10x}{8x^2}$$
,

B)
$$\lim_{x\to 3} (10-3x)^{\frac{2}{x}}$$

4.3. a)
$$\lim_{x \to \infty} (\sqrt{x^2 + 4x} - \sqrt{x^2 - 4x})$$
, 6) $\lim_{x \to 0} \frac{\operatorname{tg} 2x - \sin 8x}{4x^3}$, B) $\lim_{x \to \infty} \left(\frac{4x + 5}{4x - 8}\right)^{2x + 4}$.

$$6) \lim_{x\to 0} \frac{\operatorname{tg} 2x - \sin 8x}{4x^3}$$

$$B) \lim_{x\to\infty} \left(\frac{4x+5}{4x-8}\right)^{2x+4}$$

4.4. a)
$$\lim_{x \to 1} \frac{\cos\left(\frac{\pi x}{2}\right)}{4 - 4x}$$
, 6) $\lim_{x \to 1} \frac{x^2 - \sqrt{x}}{1 - \sqrt{x}}$, B) $\lim_{x \to 0} (1 + 2x)^{\frac{1}{4x}}$.

6)
$$\lim_{x \to 1} \frac{x^2 - \sqrt{x}}{1 - \sqrt{x}}$$
,

B)
$$\lim_{x\to 0} (1+2x)^{\frac{1}{4x}}$$

4.5. a)
$$\lim_{x \to \infty} \frac{(x-3)^3}{8x^3 + x - 8}$$

6)
$$\lim_{x\to 0} \frac{\sqrt{x+16}-4}{\sin 3x}$$
,

4.5. a)
$$\lim_{x \to \infty} \frac{(x-3)^3}{8x^3 + x - 8}$$
, 6) $\lim_{x \to 0} \frac{\sqrt{x+16} - 4}{\sin 3x}$, B) $\lim_{x \to \infty} \left(\frac{2x+3}{2x-4}\right)^{3x+5}$.

4.6. a)
$$\lim_{x \to 2} \frac{8x^2(x-2)}{3x^2-12}$$
, 6) $\lim_{x \to 0} \frac{\arctan 10x}{1-\cos 5x}$, B) $\lim_{x \to 0} (1-5x)^{\frac{4}{7x}}$.

$$6) \lim_{x \to 0} \frac{\arctan 0x}{1 - \cos 5x},$$

B)
$$\lim_{x\to 0} (1-5x)^{\frac{4}{7x}}$$

4.7. a)
$$\lim_{x\to 2} \frac{x^3-8}{x^4-16}$$
,

$$6) \lim_{x \to \pi} \frac{\sin x}{1 - \frac{x^2}{\pi^2}},$$

4.7. a)
$$\lim_{x \to 2} \frac{x^3 - 8}{x^4 - 16}$$
, 6) $\lim_{x \to \pi} \frac{\sin x}{1 - \frac{x^2}{2}}$, B) $\lim_{x \to \infty} 2x \cdot (\ln(3 + x) - \ln x)$.

4.8. a)
$$\lim_{x\to 0} \frac{5x^3 - 3x^2 + 7x}{x}$$
, 6) $\lim_{x\to 2} \frac{\sin(2-x)}{x^2 - 4}$, B) $\lim_{x\to \infty} \left(\frac{6x+1}{6x-1}\right)^{4x}$.

6)
$$\lim_{x\to 2} \frac{\sin(2-x)}{x^2-4}$$

$$\text{B) } \lim_{x\to\infty} \left(\frac{6x+1}{6x-1}\right)^{4x}.$$

4.9. a)
$$\lim_{x \to -3} \frac{2x^2 + 3x - 9}{x + 3}$$
, 6) $\lim_{x \to 0} \frac{3x^2 - 4x}{\sin 7x}$, B) $\lim_{x \to \infty} \left(\frac{2x^2 + 4}{2x^2 - 7}\right)^{6x^2}$.

6)
$$\lim_{x\to 0} \frac{3x^2 - 4x}{\sin 7x}$$

B)
$$\lim_{x \to \infty} \left(\frac{2x^2 + 4}{2x^2 - 7} \right)^{6x^2}$$

4.10. a)
$$\lim_{x\to 0} \frac{\sqrt{4+x}-2}{2x}$$
, 6) $\lim_{x\to 0} \frac{\sin 5x}{x^2+2\pi x}$, B) $\lim_{x\to \infty} \left(\frac{x^3+1}{x^3-2}\right)^{4x^3}$.

6)
$$\lim_{x\to 0} \frac{\sin 5x}{x^2 + 2\pi x}$$

B)
$$\lim_{x \to \infty} \left(\frac{x^3 + 1}{x^3 - 2} \right)^{4x^3}$$

4.11. a)
$$\lim_{x\to\infty} \frac{7x^3 - 5x^2 + 4x - 1}{(x+2)^3}$$
, 6) $\lim_{x\to0} \frac{\sin 3x}{5x(1-\cos 8x)}$, B) $\lim_{x\to0} (\cos 2x)^{\frac{1}{4x^2}}$.

4.12. a)
$$\lim_{x \to 4} \frac{\sqrt{x+12}-4}{2x-8}$$
, 6) $\lim_{x \to 0} \frac{\arcsin 10x}{\sqrt{3+x}-\sqrt{3}}$, B) $\lim_{x \to 0} (1-\sin 5x)^{\frac{2}{x}}$

6)
$$\lim_{x\to 0} \frac{\arcsin 10x}{\sqrt{3+x}-\sqrt{3}}$$

B)
$$\lim_{x \to 0} (1 - \sin 5x)^{\frac{2}{x}}$$

4.13. a)
$$\lim_{x \to 5} \frac{x^2 - 3x - 10}{\sqrt{x + 20 - 5}}$$
, 6) $\lim_{x \to 0} \frac{\arctan 5x}{\sqrt{9 - x} - 3}$, B) $\lim_{x \to 0} (1 + tg^2 x)^{\frac{4}{x^2}}$

6)
$$\lim_{x \to 0} \frac{\arctan 5x}{\sqrt{9-x}-3}$$

B)
$$\lim_{x\to 0} (1+tg^2x)^{\frac{4}{x^2}}$$

4.14. a)
$$\lim_{x \to -3} \frac{9(x^2 - 9)}{x^3(x + 3)}$$
,

$$6) \lim_{x\to 0} \frac{\cos 3x - \cos x}{1 - \cos 2x}$$

4.14. a)
$$\lim_{x \to -3} \frac{9(x^2 - 9)}{x^3(x + 3)}$$
, 6) $\lim_{x \to 0} \frac{\cos 3x - \cos x}{1 - \cos 2x}$, B) $\lim_{x \to +\infty} 3x \cdot (\ln(5 + 2x) - \ln(2x))$.

4.15. a)
$$\lim_{x \to \infty} (\sqrt{x^2 + 9} - \sqrt{x^2 - 9})$$
, 6) $\lim_{x \to 0} \frac{\sqrt{4 + x} - 2}{\arcsin 8x}$, B) $\lim_{x \to 0} (\cos 6x)^{\frac{1}{5x^2}}$.

$$6) \lim_{x\to 0} \frac{\sqrt{4+x}-2}{\arcsin 8x},$$

B)
$$\lim_{x\to 0} (\cos 6x)^{\frac{1}{5x^2}}$$
.

4.16. a)
$$\lim_{x \to 3} \frac{x^3 - 27}{x^4 - 81}$$
, 6) $\lim_{x \to 2} \frac{x^2 - 4}{\sqrt{x + 2} - 2}$, B) $\lim_{x \to 0} \frac{\ln(1 + 6x)}{2x}$.

6)
$$\lim_{x\to 2} \frac{x^2-4}{\sqrt{x+2}-2}$$

$$B) \lim_{x\to 0} \frac{\ln(1+6x)}{2x}.$$

4.17. a)
$$\lim_{x \to 0} \frac{3x^4 - 5x^3 + 12x^2}{4x^2}$$
, 6) $\lim_{x \to 0} \frac{1 - \cos 2x}{3x \cdot \lg 8x}$, B) $\lim_{x \to 0} (1 + \lg 4x)^{\frac{2}{x^2}}$.

$$6) \lim_{x\to 0} \frac{1-\cos 2x}{3x\cdot \lg 8x},$$

B)
$$\lim_{x\to 0} (1 + tg4x)^{\frac{2}{x^2}}$$
.

4.18. a)
$$\lim_{x\to\infty} \frac{7x^2-3x+5}{2x^2+6}$$
,

4.19. a)
$$\lim_{x\to 0} \frac{\sqrt{9+x}-3}{x}$$
, 6) $\lim_{x\to 0} \frac{\cos 2x - \cos 4x}{\sqrt{1-\cos 6x}}$, B) $\lim_{x\to 0} (1+tg^2 4x)^{\frac{4}{3x^2}}$.

$$6) \lim_{x\to 0} \frac{\cos 2x - \cos 4x}{\sqrt{1-\cos 6x}},$$

B)
$$\lim_{x\to 0} (1+tg^2 4x)^{\frac{4}{3x^2}}$$

4.20. a)
$$\lim_{x \to 5} \frac{3x^2 - 17x + 10}{x - 5}$$
, 6) $\lim_{x \to 0} \frac{1 - \sqrt{\cos 8x}}{2x \cdot \sin 5x}$, B) $\lim_{x \to \infty} \left(\frac{x + 3}{x - 3}\right)^{2x}$.

$$6) \lim_{x\to 0} \frac{1-\sqrt{\cos 8x}}{2x\cdot\sin 5x}$$

$$\text{B) } \lim_{x\to\infty} \left(\frac{x+3}{x-3}\right)^{2x}.$$

4.21. a)
$$\lim_{x \to 16} \frac{2 - \sqrt[4]{x}}{4 - \sqrt{x}}$$
, 6) $\lim_{x \to 0} \frac{\sqrt{9 + x} - 3}{\sin \pi (x + 4)}$, B) $\lim_{x \to 0} (1 + \sin^2 3x)^{\frac{1}{1 - \cos 2x}}$.

6)
$$\lim_{x\to 0} \frac{\sqrt{9+x}-3}{\sin \pi(x+4)}$$

B)
$$\lim_{x\to 0} (1+\sin^2 3x)^{\frac{1}{1-\cos 2x}}$$

4.22. a)
$$\lim_{x \to \infty} \frac{(x+2)^3}{3x^3 + 8}$$
, 6) $\lim_{x \to 0} \frac{\sin 3x}{x \cdot e^{5x}}$, B) $\lim_{x \to 0} \frac{\ln(1-8x)}{4x}$.

6)
$$\lim_{x\to 0} \frac{\sin 3x}{x \cdot e^{5x}}$$

$$B) \lim_{x\to 0} \frac{\ln(1-8x)}{4x}$$

4.23. a)
$$\lim_{x \to 5} \frac{\sqrt{x-1}-2}{x-5}$$
, 6) $\lim_{x \to 0} \frac{4x \cdot e^{8x}}{\operatorname{tg} 7x}$, B) $\lim_{x \to 0} \frac{1}{3x} \cdot \ln \sqrt{1+2x}$.

$$6) \lim_{x\to 0} \frac{4x \cdot e^{8x}}{\lg 7x}$$

$$B) \lim_{x\to 0} \frac{1}{3x} \cdot \ln \sqrt{1+2x}$$

4.24. a)
$$\lim_{x \to \infty} \left(\sqrt{x^2 + 3} - \sqrt{x^2 - 3} \right)$$
, 6) $\lim_{x \to \frac{\pi}{1}} \frac{\sin\left(x - \frac{\pi}{4}\right)}{1 - \sqrt{2}\cos x}$, B) $\lim_{x \to 0} (\cos 4x)^{\frac{1}{3x^2}}$.

6)
$$\lim_{x \to \frac{\pi}{4}} \frac{\sin\left(x - \frac{\pi}{4}\right)}{1 - \sqrt{2}\cos x},$$

B)
$$\lim_{x\to 0} (\cos 4x)^{\frac{1}{3x^2}}$$
.

4.25. a)
$$\lim_{x \to \infty} \frac{2x^3 - 5x + 6}{x + 3x^3 - 8}$$
, 6) $\lim_{x \to 0} \frac{\arcsin 3x}{\arcsin 5x}$, B) $\lim_{x \to \infty} \left(\frac{3x^2 + 2}{3x^2 - 8}\right)^{10x^2}$.

6)
$$\lim_{x\to 0} \frac{\arcsin 3x}{\arcsin 5x}$$
,

B)
$$\lim_{x\to\infty} \left(\frac{3x^2+2}{3x^2-8} \right)^{10x^2}$$

4.26. a)
$$\lim_{x \to 0} \frac{\sqrt{16 + x} - 4}{1 - \cos 5x}$$
, 6) $\lim_{x \to 1} \left(\frac{1}{1 - x} - \frac{2}{1 - x^2} \right)$, B) $\lim_{x \to 1} (3x - 2)^{\frac{5x}{x^2 - 1}}$.

6)
$$\lim_{x\to 1} \left(\frac{1}{1-x} - \frac{2}{1-x^2} \right)$$
,

B)
$$\lim_{x \to 1} (3x - 2)^{\frac{5x}{x^2 - 1}}$$

4.27. a)
$$\lim_{x \to +\infty} (\sqrt{x^2 + x + 1} - \sqrt{x^2 - x})$$
, 6) $\lim_{x \to \frac{\pi}{2}} \frac{\cos x - \sin x}{\cos 2x}$, B) $\lim_{x \to 0} \frac{\ln(1 + 2x)}{3^x - 1}$.

6)
$$\lim_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{\cos 2x},$$

B)
$$\lim_{x\to 0} \frac{\ln(1+2x)}{3^x-1}$$

4.28. a)
$$\lim_{x \to +\infty} \left(\frac{5x^2 - x}{x - 3} - \frac{5x^2 - 4}{x - 1} \right)$$
, 6) $\lim_{x \to \pi} \frac{\sin 3x}{\sin 2x}$, B) $\lim_{x \to \infty} \left(\frac{5x^2 + 7}{5x^2 - 2} \right)^{2x^2}$.

$$6) \lim_{x \to \pi} \frac{\sin 3x}{\sin 2x},$$

B)
$$\lim_{x \to \infty} \left(\frac{5x^2 + 7}{5x^2 - 2} \right)^{2x^2}$$
.

4.29. a)
$$\lim_{x \to 5} \frac{\sqrt{1+3x} - \sqrt{2x+6}}{x^2 - 5x}$$
, 6) $\lim_{x \to 0} \frac{\sqrt{2} \operatorname{tg} 6x}{\sqrt{1-\cos 4x}}$, B) $\lim_{x \to 3} (2x-5)^{\frac{2x}{x-3}}$.

6)
$$\lim_{x\to 0} \frac{\sqrt{2} \operatorname{tg} 6x}{\sqrt{1-\cos 4x}}$$
,

B)
$$\lim_{x\to 3} (2x-5)^{\frac{2x}{x-3}}$$
.

4.30. a)
$$\lim_{x \to \infty} \frac{6x^3 - 2x + 7}{2 - 5x + 3x^3}$$
, 6) $\lim_{x \to 0} x \cdot \operatorname{tg} 3x \cdot \operatorname{ctg}^2 2x$, B) $\lim_{x \to +\infty} (2x + 3)(\ln(x + 2) - \ln x)$.

Задание 5. Найти производные $\frac{dy}{dx}$.

5.1. a)
$$y = \ln \cos(4x+5)$$
, 6) $y = \sin x^2 \cdot e^{\sin 4x}$, B) $y = (\arcsin x)^{\frac{1}{x}}$, $y = \cos(4x+5)$

5.2. a)
$$y = \arccos 2^x$$
, 6) $y = \frac{xe^{-x^2}}{\ln 5x}$, B) $y = (\arccos 2^x)^{5x}$, r) $\ln x + e^{-\frac{y}{x}} = 2$.

5.3. a)
$$y = \ln(e^{-x} + x \cdot e^{x})$$
, 6) $y = \frac{\arctan \frac{1}{x}}{1 + x^{2}}$, B) $y = (\operatorname{tg} 3x)^{\operatorname{ctg} x}$, $y = \ln y + \frac{x}{y} = 1$.

5.4. a)
$$y = \arcsin^2 \frac{x}{2}$$
, 6) $y = \frac{(1-x^2) \cdot e^{2x-1}}{\arccos^2 x}$, B) $y = (1+x^2)^{\arccos}$, r) $tgx = x \cdot y$.

5.5. a)
$$y = \operatorname{arctg} e^{2x}$$
, $6) y = \frac{e^x + \sin 5x}{x \cdot e^x}$, $6) y = (\sin 10x)^{\ln^2 x}$, $7) \sqrt{x^2 + y^2} = 2\operatorname{arctg} \frac{y}{x}$.

5.6. a)
$$y = \ln \ln x$$
, 6) $y = \frac{x^2 \cdot \sqrt{x+1}}{\sin(1-x)}$, B) $y = (\arcsin 5x)^{\frac{x^2}{2}}$, $r) \cos^2(x+y) = x \cdot y$.

5.7. a)
$$y = \ln \frac{x}{\sqrt{1 - x^2}}$$
, 6) $y = \frac{\sin 10x}{\cos(\sin 5x)}$, B) $y = (\ln 10x)^{\frac{1}{\cos x}}$,

5.8. a)
$$y = e^{\arcsin x} \cdot \sqrt{1 - x^2}$$
, 6) $y = \frac{\arccos \sqrt[3]{x^2 - 2}}{tg^2 x}$, B) $\arctan \frac{y}{x} = \ln(x^2 + y^2)$,

5.9. a)
$$y = \cos \frac{1 - \sqrt{x}}{1 + \sqrt{x}}$$
, 6) $y = \ln \left(\sin^2 x + \sqrt{1 + \cos^2 x} \right)$, B) $y = \left(\sin 2x \right)^{\cot \frac{x}{2}}$,
 $y = x + \operatorname{arcctg} \frac{y}{x}$.

5.10. a)
$$y = \operatorname{arctg}(e^{2x} + 1)^2$$
, 6) $y = \frac{x - \sin 2x}{e^{5x}}$, B) $y = (\arcsin 5x)^{\frac{1}{x}}$, r) $x = y + e^{xy}$.

5.11. a)
$$y = \ln^2 \arctan \frac{x}{3}$$
, 6) $y = \frac{e^{2x}}{\log_2(3x^2 + 1)}$, B) $y = (2x)^{e^{3x}}$, r) $\ln y + \frac{x}{y} = x + y$.

5.12. a)
$$y = \arctan(1-x)$$
, 6) $y = \frac{(1-x^2)\cdot\cos 3x}{\arccos 5x}$, B) $y = (e^{2x} + x)^{\frac{1}{x}}$, r) $\arcsin \sqrt{x} + \frac{1}{x+y} = y^2$.

5.13. a)
$$y = 3^{\frac{\ln x}{\sin x}}$$
, 6) $y = \frac{\cot g^3 x}{\sqrt[3]{x + \sqrt{x}}}$, B) $y = (\ln x^2)^{\cos^2 x}$, $y = \sin x \cdot y + \frac{x}{y} = x$.

5.14. a)
$$y = \arccos \frac{1}{1+x}$$
, 6) $y = 3^{-\frac{\ln x}{\sin 2x}}$, B) $y = (1+x^2)^{\arccos x}$, $y = x \cdot e^{-xy}$.

5.16. a)
$$y = (\arcsin(8x+3))^5$$
,
6) $y = \sqrt{\frac{x+\sqrt{x}}{x-\sqrt{x}}}$,
B) $y = (2x)^{\arcsin^2(x-3)}$,
c) $x \ln y - y \ln x = 8$.

5.17. a)
$$y = \ln(x^2 + e^{-x})$$
,
6) $y = \frac{1 + \sin^2 x}{\cos x^2}$,
B) $y = (\arctan 2x)^{\frac{1}{3x}}$,
F) $\sin(x+2y) + 2x - 3y = 0$.

5.18. a)
$$y = \sqrt{1 - x^2} \cdot \text{ctg}^3 x$$
, 6) $y = 2^{\frac{1 - x}{1 + x}}$, B) $y = (x^2 + 3)^{\sqrt{x}}$, $r)(x + y)^2 + (x - 3y)^3 = 0$.

5.20. a)
$$y = e^{x^3} \cdot \cos \sqrt{1 + x^2}$$
, 6) $y = \arccos \frac{2x}{1 + x^2}$, B) $y = (\arctan 2x)^{\sin 3x}$, $y = (\arctan 2x)^{\sin 3x}$

5.22. a)
$$y = \cos 5x \cdot e^{-x^2}$$
, 6) $y = \sqrt[3]{\frac{x^2}{\sin 2x}}$, B) $y = (x)^{\frac{1}{e^x}}$, $(x)^2 + ye^x = x \cdot y$.

5.23. a)
$$y = 3^{\frac{1}{x}} + \sin^2 5x$$
, 6) $y = \frac{1 + x \operatorname{arct} gx}{\sqrt{1 + x^2}}$, B) $y = \left(1 + \frac{1}{x}\right)^{\cos 5x}$, $y = \cos 5x$

5.25. a)
$$y = 4^{\sqrt{1+2x}}$$
, 6) $y = \frac{(x+2)^2}{tg^3 10x}$, B) $tgx \cdot tgy = x \cdot y$, r) $y = (arctgx)^{\frac{1}{1+x^2}}$.

5.26. a)
$$y = e^{\cos^2 x}$$
, 6) $y = \frac{\sin^2 x - 2 \operatorname{tg} x}{1 + \cos 4x}$, B) $y = \left(\sin \frac{x}{2}\right)^{x^2}$, r) $y \operatorname{tg} x = 1 + x e^y$.

5.28. a)
$$y = \cos \ln x + \sin \ln x$$
, 6) $y = \frac{\arcsin^3 x}{\cos^3 x + \sin^2 x}$, B) $e^x \sin y - e^{-y} \cos x = 0$,
 $(x + \sin x) = (2x)^{\frac{x}{\ln x}}$.

5.29. a)
$$y = \sin^2\left(1 + \frac{1}{x}\right)$$
, 6) $y = \arctan\left(\frac{1 - 2x}{1 + 2x}\right)$, B) $y = \left(\cot 0x\right)^{tg^2x}$, $\cot (x + y) - x \cdot y = 0$.

5.30. a)
$$y = \frac{e^{x^2 + 1}}{\sqrt[5]{1 - x^3}}$$
, 6) $y = 2^{\frac{x}{\ln x}}$, B) $y = (\cos 5x)^{e^{igx}}$, F) $x \cdot y + e^{x + y} = x^3$.

Задание 6. Найти производные второго порядка y''_{xx} для параметрической функции.

$$6.1. \begin{cases} x = \frac{1}{\sin t}, \\ y = \cos^2 t, \end{cases}$$

$$6.2. \begin{cases} x = \ln \sin t \\ y = e^{\cos t}. \end{cases}$$

6.1.
$$\begin{cases} x = \frac{1}{\sin t}, & 6.2. \begin{cases} x = \ln \sin t, \\ y = e^{\cos t}. \end{cases} & 6.3. \begin{cases} x = 3t \cdot \cos t, \\ y = 3t \cdot \sin t. \end{cases} & 6.4. \begin{cases} x = e^{2t+1}, \\ y = e^{3t-2}. \end{cases}$$

6.4.
$$\begin{cases} x = e^{2t+1}, \\ y = e^{3t-2}. \end{cases}$$

$$6.5. \begin{cases} x = \frac{1}{\sin t} \\ y = \operatorname{ctg} t. \end{cases}$$

6.6.
$$\begin{cases} x = e^t + 1, \\ y = e^{3t}. \end{cases}$$

6.5.
$$\begin{cases} x = \frac{1}{\sin t}, \\ y = \cot t. \end{cases}$$
6.6.
$$\begin{cases} x = e^{t} + 1, \\ y = e^{3t}. \end{cases}$$
6.7.
$$\begin{cases} x = e^{t^{2}}, \\ y = \sqrt{1 - t^{2}}. \end{cases}$$
6.8.
$$\begin{cases} x = t^{2}, \\ y = t^{3} - t^{2}. \end{cases}$$

6.8.
$$\begin{cases} x = t^2, \\ y = t^3 - t^2 \end{cases}$$

$$6.9. \begin{cases} x = \arctan y \\ y = \frac{1}{2}t^2. \end{cases}$$

6.9.
$$\begin{cases} x = \operatorname{arct} gt, \\ y = \frac{1}{2}t^2. \end{cases}$$
6.10.
$$\begin{cases} x = t + \frac{1}{2}\sin 2t, \\ y = \cos^3 t. \end{cases}$$
6.11.
$$\begin{cases} x = \frac{2-t}{2+t^2}, \\ y = \frac{t^2}{2-t^2}. \end{cases}$$
6.12.
$$\begin{cases} x = \arcsin t, \\ y = \sqrt{1-t^2}. \end{cases}$$

6.11.
$$\begin{cases} x = \frac{2-t}{2+t^2}, \\ y = \frac{t^2}{2+t^2}. \end{cases}$$

$$6.12. \begin{cases} x = \arcsin t, \\ y = \sqrt{1 - t^2}. \end{cases}$$

$$6.13. \begin{cases} x = e^{2t}, \\ y = \ln 5t. \end{cases}$$

6.13.
$$\begin{cases} x = e^{2t}, \\ y = \ln 5t. \end{cases}$$
 6.14.
$$\begin{cases} x = \operatorname{arcctg}t, \\ y = 5(1+t^2). \end{cases}$$
 6.15.
$$\begin{cases} x = \ln 10t, \\ y = t^3 + 2. \end{cases}$$
 6.16.
$$\begin{cases} x = \operatorname{tg}t, \\ y = \cos^2 t. \end{cases}$$

$$6.15. \begin{cases} x = \ln 10t, \\ y = t^3 + 2. \end{cases}$$

$$6.16. \begin{cases} x = \text{tg}t, \\ y = \cos^2 t. \end{cases}$$

$$6.17. \begin{cases} x = e^t, \\ y = \arcsin t. \end{cases}$$

$$6.18. \begin{cases} x = \cos\frac{t}{2}, \\ y = t - \sin t. \end{cases}$$

6.17.
$$\begin{cases} x = e^{t}, \\ y = \arcsin t. \end{cases}$$
 6.18.
$$\begin{cases} x = \cos \frac{t}{2}, \\ y = t - \sin t. \end{cases}$$
 6.19.
$$\begin{cases} x = \arcsin(t^{2} - 1), \\ y = \arccos(2t). \end{cases}$$

6.20.
$$\begin{cases} x = t + \frac{1}{2}\sin 2t \\ y = \cos^2 t. \end{cases}$$

6.20.
$$\begin{cases} x = t + \frac{1}{2}\sin 2t, \\ y = \cos^2 t. \end{cases}$$
 6.21.
$$\begin{cases} x = \frac{1}{t^2 - 3t + 2}, \\ y = \frac{2}{t^2 - 5t + 4}. \end{cases}$$
 6.22.
$$\begin{cases} x = \ln tgt, \\ y = \operatorname{ctg}t. \end{cases}$$

$$6.22. \begin{cases} x = \ln tgt \\ y = ctgt. \end{cases}$$

6.23.
$$\begin{cases} x = 2\cos^2 2t, \\ y = 3\sin^2 2t. \end{cases}$$

$$6.24. \begin{cases} x = 2t - \sin 2t \\ y = \sin^3 t. \end{cases}$$

6.23.
$$\begin{cases} x = 2\cos^2 2t, \\ y = 3\sin^2 2t. \end{cases}$$
 6.24.
$$\begin{cases} x = 2t - \sin 2t, \\ y = \sin^3 t. \end{cases}$$
 6.25.
$$\begin{cases} x = \ln(1 + t^2), \\ y = t^2. \end{cases}$$

6.26.
$$\begin{cases} x = \arcsin 2t, \\ y = \sqrt{1 - 4t^2}. \end{cases}$$

$$6.27. \begin{cases} x = \ln t, \\ y = \frac{1}{1 - t}. \end{cases}$$

6.26.
$$\begin{cases} x = \arcsin 2t, \\ y = \sqrt{1 - 4t^2}. \end{cases}$$
6.27.
$$\begin{cases} x = \ln t, \\ y = \frac{1}{1 - t}. \end{cases}$$
6.28.
$$\begin{cases} x = \arcsin(t^2 - 1), \\ y = \arccos 2t. \end{cases}$$

6.29.
$$\begin{cases} x = e^{-t^2}, \\ y = \arctan(2t+1). \end{cases}$$
 6.30.
$$\begin{cases} x = \sqrt{1+t^2}, \\ y = 2\arctan t. \end{cases}$$

$$6.30. \begin{cases} x = \sqrt{1 + t^2}, \\ y = 2 \operatorname{arctg} t \end{cases}$$

Задание 7. Исследовать функцию y = f(x) и построить ее график.

7.1.
$$y = x^2 \cdot \ln x$$
. 7.2. $y = \frac{1}{x} + 4x^2$. 7.3. $y = \frac{x}{(1+x^2)^2}$. 7.4. $y = x^3 \cdot e^{-4x}$.

7.3.
$$y = \frac{x}{(1+x^2)^2}$$
. 7.4. $y = x^3 \cdot e^{-4x}$.

7.5.
$$y = \frac{x^3 - 1}{x^4}$$
. 7.6. $y = \frac{e^x}{x + 1}$

7.5.
$$y = \frac{x^3 - 1}{x^4}$$
. 7.6. $y = \frac{e^x}{x + 1}$. 7.7. $y = 4e^{-x^2 + 8x}$. 7.8. $y = x + \frac{4}{x + 2}$.

7.9.
$$y = \frac{\ln x}{x}$$
. 7.10. $y = \frac{3 - x^2}{x + 2}$. 7.11. $y = \frac{x - 2}{x^2 - 4x + 5}$. 7.12. $y = x^2 - 2\ln x$.

7.13.
$$y = \frac{x^3}{x^2 - 1}$$
.

7.14.
$$y = \ln(4 - x^2)$$

7.13.
$$y = \frac{x^3}{x^2 - 1}$$
. 7.14. $y = \ln(4 - x^2)$. 7.15. $y = (2 + x^2)e^{-x^2}$.

7.16.
$$y = \frac{x^2 - 2x - 7}{x + 2}$$
. 7.17. $y = \frac{x}{\sqrt[3]{x^2 - 1}}$. 7.18. $y = \frac{x^2 - 5}{x - 3}$.

7.19.
$$y = \frac{x^2 + 3x + 2}{x^2}$$
. 7.20. $y = \frac{x^2 - 1}{x^2 + 4}$. 7.21. $y = \sqrt[3]{1 - x^3}$.

7.22.
$$y = \ln \frac{1+x}{1-x}$$
. 7.23. $y = x + \ln (x^2 + 4)$. 7.24. $y = x \cdot e^{-x}$.

7.25.
$$y = \ln \frac{x-1}{x-2}$$
. 7.26. $y = \frac{1-2x}{x^2-x-2}$. 7.27. $y = \frac{x}{e^{2x}}$.

7.28.
$$y = \ln(9 - x^2)$$
. 7.29. $y = \frac{x^2}{2 - x}$. 7.30. $y = x - \frac{1}{x^2}$.

Тема 4. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

- 1. Понятие функции нескольких переменных. Область определения. Частное и полное приращение.
 - 2. Предел функции нескольких переменных. Непрерывность.
- 3. Частные производные функции нескольких переменных. Геометриический смысл частных производных функции нескольких переменных.

- 4. Необходимые и достаточные условия дифференцируемости функции нескольких переменных.
- 5. Дифференцирование сложной функции и неявно заданной функции. Полный дифференциал.
- 6. Производная по направлению. Градиент функции нескольких переменных. Свойства градиента.
- 7. Частные производные и дифференциалы высших порядков. Формула Тейлора.
- 8. Экстремум функции нескольких переменных. Необходимые и достаточные условия существования экстремума.
- 9. Условный экстремум функции нескольких переменных. Метод множителей Лагранжа.
- 10. Наибольшее и наименьшее значения функции нескольких переменных в области.

4.1. Понятие функции нескольких переменных и ее предела

Пусть D — множество точек $X(x_1, x_2, ..., x_m)$ пространства E^m . Если каждой точке X по определенному закону f ставится в соответствие некоторое число z, то говорят, что на множестве D определена функция m переменных $z = f(x_1, x_2, ..., x_m); z = f(x)$.

При этом $x_1, x_2, ..., x_m$ называются независимыми переменными или аргументами.

Множество D точек X, для которых существует z, называют областью определения функции и обозначают D(f), а множество значений z обозначают E(f).

z = f(x, y) – функция двух переменных.

Пусть функция $z = f(x_1, x_2, ..., x_m)$ определена на множестве D.

Число b называют **пределом** функции z=f(X) **в точке** $A(a_1,\ a_2,\ ...,\ a_m)$, если для любого числа $\varepsilon>0$ существует такое число $\delta(\varepsilon)>0$, что для всех точек $X\in D$, удовлетворяющих условию $0<\rho(X,A)<\delta$, выполняется неравенство $|f(X)-b|<\varepsilon$.

Обозначение:

$$\lim_{X \to A} f(X) = b \text{ или } \lim_{\substack{x_1 \to a_1 \\ x_2 \to a_2 \\ \vdots \\ x_m \to a_m}} f(x_1, x_2, ..., x_m) = b.$$

Частным приращением по переменной x_k $(k=\overline{1,m})$ функции $z=f(x_1,x_2,...,x_m)$ в точке $X\in D$ называется разность

$$\Delta_{x_k} z = f(x_1, x_2, ..., x_k + \Delta x_k, ..., x_m) - f(x_1, x_2, ..., x_k, ..., x_m),$$

где Δx_k – приращение переменной x_k .

Если существует $\lim_{\Delta x_k \to 0} \frac{\Delta_{x_k} z}{\Delta x_k}$, то он называется частной производной

функции z по переменной x_k в точке X и обозначается $\frac{\partial z}{\partial x_k}$ (или z'_{x_k} , f'_{x_k} $(x_1, x_2, ..., x_m)$).

При нахождении частной производной по одной из переменных пользуются правилами дифференцирования функции одной переменной, считая все остальные переменные постоянными.

Пример 4.1. Найти частные производные функции $z = \ln \sin \frac{x+2}{y}$.

Решение. Имеем

$$\frac{\partial z}{\partial x} = \left| y = \text{const} \right| = \frac{1}{\sin \frac{x+2}{y}} \cdot \cos \frac{x+2}{y} \cdot \frac{1}{y} = \frac{1}{y} \operatorname{ctg} \frac{x+2}{y},$$

$$\frac{\partial z}{\partial y} = \left| x = \text{const} \right| = \frac{1}{\sin \frac{x+2}{y}} \cdot \cos \frac{x+2}{y} \cdot \left(\frac{x+2}{y} \right)_{y}' = \text{ctg} \frac{x+2}{y} \cdot (x+2) \cdot \left(-\frac{1}{y^{2}} \right) =$$

$$= -\frac{x+2}{y^{2}} \cdot \text{ctg} \frac{x+2}{y}.$$

Рассмотрим функцию трех переменных u = u(x, y, z) на множестве D.

Полным дифференциалом функции ${\it u}$ в точке M(x,y,z) называется главная часть полного приращения функции

$$\Delta u = A \cdot \Delta x + B \cdot \Delta y + C \cdot \Delta z + o(\Delta x) + o(\Delta y) + o(\Delta z),$$

линейная относительно приращений переменных Δx , Δy и Δz (A , B, C – постоянные числа).

Полный дифференциал находят по формуле

$$du = \frac{\partial u}{\partial x} \cdot dx + \frac{\partial u}{\partial y} \cdot dy + \frac{\partial u}{\partial z} \cdot dz, \qquad (4.1)$$

где $dx = \Delta x$, $dy = \Delta y$, $dz = \Delta z$.

Производной по направлению вектора $\vec{s} = (s_x, s_y, s_z)$ функции u = u(x, y, z) в точке $M(x, y, z) \in D$ называется предел

$$\frac{\partial u}{\partial s} = \lim_{t \to 0+0} \frac{u(x + ts_x, y + ts_y, z + ts_z)}{t}$$
, если этот предел существует.

Обозначим через $\cos \alpha$, $\cos \beta$, $\cos \gamma$ направляющие косинусы вектора \vec{s} . Тогда

$$\frac{\partial u}{\partial s} = \frac{\partial u}{\partial x} \cdot \cos \alpha + \frac{\partial u}{\partial y} \cdot \cos \beta + \frac{\partial u}{\partial z} \cdot \cos \gamma \tag{4.2}$$

Градиентом функции u = u(x, y, z) в точке M(x, y, z) называется вектор, проекциями которого на оси координат являются значения частных производных $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial u}{\partial z}$ в этой точке:

$$\overrightarrow{\text{grad}} u = \frac{\partial u}{\partial x} \cdot \vec{i} + \frac{\partial u}{\partial y} \cdot \vec{j} + \frac{\partial u}{\partial z} \cdot \vec{k}. \tag{4.3}$$

При этом: 1)
$$\Pi p_{\overline{s}} \overrightarrow{\text{grad}} u = \frac{\partial u}{\partial \overline{s}}$$
, 2) $\max \frac{\partial u}{\partial \overline{s}} = \left| \overrightarrow{\text{grad}} u \right|$.

Пример 4.2. Дана функция $u = x^{y^2z}$, точка M(e, 2, -1), вектор $\vec{s} = (0; 3; 4)$. Найти: а) полный дифференциал du, б) производную по направлению вектора $\vec{s} \left(\frac{\partial u}{\partial \vec{s}} \right)$, в) градиент функции $\overrightarrow{\text{grad}} u$ в точке M.

Решение. Найдем частные производные функции u = u(x, y, z):

$$\frac{\partial u}{\partial x} = \begin{vmatrix} y = \text{const} \\ z = \text{const} \end{vmatrix} = y^2 z \cdot x^{y^2 z - 1}, \qquad \frac{\partial u}{\partial y} = \begin{vmatrix} x = \text{const} \\ z = \text{const} \end{vmatrix} = x^{y^2 z} \cdot \ln x \cdot 2yz,$$

$$\frac{\partial u}{\partial z} = \begin{vmatrix} x = \text{const} \\ y = \text{const} \end{vmatrix} = x^{y^2 z} \cdot \ln x \cdot y^2.$$

Вычислим значения производных в точке M:

$$\frac{\partial u}{\partial x}\Big|_{M} = 4 \cdot (-1) \cdot e^{4\cdot (-1)-1} = -\frac{4}{e^{5}}, \qquad \frac{\partial u}{\partial y}\Big|_{M} = e^{4\cdot (-1)} \cdot \ln e \cdot 2 \cdot 2 \cdot (-1) = -\frac{4}{e^{4}},$$

$$\frac{\partial u}{\partial z}\Big|_{M} = e^{4\cdot (-1)} \cdot \ln e \cdot 4 = \frac{4}{e^{4}}.$$

а. Находим полный дифференциал функции в точке M по формуле (4.1):

$$\left. du \right|_{M} = \frac{\partial u}{\partial x} \bigg|_{M} \cdot dx + \frac{\partial u}{\partial y} \bigg|_{M} \cdot dy + \frac{\partial u}{\partial z} \bigg|_{M} \cdot dz = -\frac{4}{e^{5}} dx - \frac{4}{e^{4}} dy + \frac{4}{e^{4}} dz \,.$$

б. Найдем направляющие косинусы вектора \vec{s} . Имеем $|\vec{s}| = \sqrt{0^2 + 3^2 + 4^2} = 5$,

$$\cos \alpha = \frac{x_s}{|\vec{s}|} = \frac{0}{5} = 0, \cos \beta = \frac{y_s}{|\vec{s}|} = \frac{3}{5}, \cos \gamma = \frac{z_s}{|\vec{s}|} = \frac{4}{5}$$

По формуле (4.2) вычисляем производную:

$$\frac{\partial u}{\partial \overline{s}}\Big|_{M} = -\frac{4}{e^{5}} \cdot 0 - \frac{4}{e^{4}} \cdot \frac{3}{5} + \frac{4}{e^{4}} \cdot \frac{4}{5} = \frac{4}{5e^{4}}.$$

в. Вычисляем градиент функции в точке M по формуле (4.3):

$$\overrightarrow{\operatorname{grad}} u \Big|_{M} = -\frac{4}{e^{5}} \cdot \overrightarrow{i} - \frac{4}{e^{4}} \cdot \overrightarrow{j} + \frac{4}{e^{4}} \cdot \overrightarrow{k}.$$

4.2. Частные производные и дифференциал высших порядков

Пусть функция z = f(x, y) определена и непрерывна вместе со своими первыми частными производными в некоторой точке $P(x, y) \in D(f)$.

Частные производные по переменным x, y от производных первого порядка называются **частными производными второго порядка** и обозначаются

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right), \quad \frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right), \quad \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right), \quad \frac{\partial^2 z}{\partial y \partial x} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right).$$

Производные $\frac{\partial^2 z}{\partial x \partial y}$, $\frac{\partial^2 z}{\partial y \partial x}$ называются **смешанными** производными.

Если смешанные производные $\frac{\partial^2 z}{\partial x \partial y}$, $\frac{\partial^2 z}{\partial y \partial x}$ непрерывны, то

справедливо равенство $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$.

Полным дифференциалом второго порядка функции z = f(x, y) называется дифференциал от ее полного дифференциала, который обозначается

$$d^{2}z = d\left(dz\right) = d\left(\frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy\right) = \frac{\partial^{2}z}{\partial x^{2}}\left(dx\right)^{2} + 2\frac{\partial^{2}z}{\partial x\partial y}dxdy + \frac{\partial^{2}z}{\partial y^{2}}\left(dy\right)^{2}.$$

4.3. Экстремум функции нескольких переменных

Пусть функция z = f(x,y) определена в области D. Функция z = f(x,y) имеет в точке $P_0(x_0,y_0) \in D$ локальный максимум (минимум), равный $f(x_0,y_0)$, если существует такая δ — окрестность этой точки, что для всех отличных от P_0 точек P(x,y) из этой окрестности имеет место неравенство $f(x,y) < f(x_0,y_0)$ ($f(x,y) > f(x_0,y_0)$).

Необходимые условия экстремума. Если функция f(x,y) в точке $P_0(x_0,y_0)$ имеет локальный экстремум, то в этой точке обе частные производные, если они существуют, равны нулю или хотя бы одна из них в этой точке не существует.

Если $P_0(x_0, y_0)$ — точка экстремума дифференцируемой функции

$$z = f(x, y)$$
, to $f'_{x}(x_{0}, y_{0}) = 0$, $f'_{y}(x_{0}, y_{0}) = 0$. (4.4)

Из этой системы уравнений находят стационарные точки.

Сформулируем достаточные условия существования экстремума.

Пусть $A = f_{xx}''(x_0, y_0), B = f_{xy}''(x_0, y_0), C = f_{yy}''(x_0, y_0),$ где $P_0(x_0, y_0)$ – стационарная точка дважды дифференцируемой функции z = f(x, y). Тогда:

- 1) если $B^2 AC > 0$, то f(x,y) имеет в точке $P_0(x_0,y_0)$ локальный экстремум (при A < 0 локальный максимум, при A > 0 минимум);
 - 2) если $B^2 AC < 0$, экстремума в точке $P_0(x_0, y_0)$ нет;
- 3) если $B^2 AC = 0$, функция может иметь, а может и не иметь локальный экстремум.

Пример 4.3. Найти локальные экстремумы функции $z = x^2 - 2xy + 4y^3$.

Решение. Областью определения данной функции является вся плоскость.

Находим частные производные первого порядка и составляем систему уравнений (4.4):

$$\frac{\partial z}{\partial x} = 2x - 2y = 0, \quad \frac{\partial z}{\partial y} = -2x + 12y^2 = 0.$$

Решая эту систему, получим две стационарные точки $P_1(0;0)$ и $P_2\left(\frac{1}{6}; \frac{1}{6}\right)$.

Находим частные производные второго порядка: $\frac{\partial^2 z}{\partial x^2} = 2$; $\frac{\partial^2 z}{\partial x \partial y} = -2$;

 $\frac{\partial^2 z}{\partial v^2}$ = 24 y . Вычисляем их значения в точках P_1 и P_2 .

В точке $P_1(0;0)$: A=2, B=-2, C=0. Тогда имеем $AC-B^2=-4<0$. Следовательно, точка $P_1(0;0)$ не является точкой экстремума.

В точке $P_2\left(\frac{1}{6};\ \frac{1}{6}\right)$: $A=2,\ B=-2,\ C=4$. Тогда $AC-B^2=4>0$. Так как A>0, то точка $P_2\left(\frac{1}{6};\ \frac{1}{6}\right)$ — точка локального минимума.

Вычисляем $z_{\min} = z(P_2) = -\frac{1}{108}$.

Задание 8. Дана функция u = u(x, y, z), точка $M(x_0, y_0, z_0)$ и вектор \vec{s} . Найти в точке M: а) дифференциал du; б) производную $\frac{\partial u}{\partial \vec{s}}$ по направлению вектора \vec{s} ; в) градиент $\overrightarrow{\text{grad}}u$.

8.1.
$$u = \cos \frac{2x}{yz} - y^2 x^2$$
, $\vec{s} = 2\vec{i} - 4\vec{j} + \vec{k}$, $M(0; 4; -5)$.

8.2.
$$u = x^2 \ln\left(\frac{y}{z}\right) + zy$$
, $\vec{s} = \vec{i} + \vec{j} - \vec{k}$, $M(2; 1; 1)$.

8.3.
$$u = \arcsin(z^2 + 2x) + xy^2$$
, $\vec{s} = \vec{i} - 2\vec{j} + \vec{k}$, $M(-1; 2; 1)$.

8.4.
$$u = \frac{2y}{x-z} - y^x$$
, $\vec{s} = 2\vec{i} + \vec{j} - \vec{k}$, $M(1; 5; 2)$.

8.5.
$$u = \operatorname{ctg} \frac{x}{2y} - y^2 z$$
, $\vec{s} = 5\vec{i} - \vec{j} + \vec{k}$, $M\left(\frac{\pi}{2}; 1; 0\right)$.

8.6.
$$u = e^{xy} + \frac{2y}{z^2}$$
, $\vec{s} = 4\vec{i} + 2\vec{j} - \vec{k}$, $M(1; 2; -1)$.

8.7.
$$u = x^{yz} + x^2z$$
, $\vec{s} = \vec{i} + 5\vec{j} - 2\vec{k}$, $M(2; 2; 1)$.

8.8.
$$u = y \cdot \ln(x^2 \cdot z) + 2x^2y$$
, $\vec{s} = -\vec{i} - \vec{j} + 3\vec{k}$, $M(1; 1; 2)$.

8.9.
$$u = y \cdot \arccos \frac{z}{x} + y^3 x$$
, $\vec{s} = 2\vec{i} - \vec{j} - \vec{k}$, $M(2; 5; 2)$.

8.10.
$$u = \operatorname{ctg}(y \cdot z) - \frac{y}{x^2}, \quad \vec{s} = \vec{i} - 2\vec{j} - \vec{k}, \quad M\left(1; \frac{\pi}{4}; 1\right).$$

8.11.
$$u = \frac{x - 2y}{z + x} + e^{xy}$$
, $\vec{s} = 4\vec{i} + 7\vec{j} - 6\vec{k}$, $M(0; 2; 1)$.

8.12.
$$u = \arctan \sqrt{x - 2y^2} \cdot z^3$$
, $\vec{s} = \vec{i} + 10\vec{j} - 2\vec{k}$, $M(5; 1; 3)$.

8.13.
$$u = zy^2 + \ln \frac{x}{y - x}$$
, $\vec{s} = 3\vec{i} + 6\vec{j} + 2\vec{k}$, $M(3; 4; 1)$.

8.14.
$$u = \frac{y}{x^2} - x^{2yz^2}$$
, $\vec{s} = 5\vec{i} - \vec{j} - \vec{k}$, $M(2; 5; 0)$.

8.15.
$$u = 2^{xz} - \cos\frac{y}{2z}$$
, $\vec{s} = \vec{i} + 8\vec{j} - 4\vec{k}$, $M\left(2; \frac{\pi}{2}; 1\right)$.

8.16.
$$u = \sqrt{2xy - y^2z^2} + \frac{z}{x}$$
, $\vec{s} = -\vec{i} + 4\vec{j} + 2\vec{k}$, $M(2; 2; 0)$.

8.17.
$$u = \operatorname{arctg}\left(\frac{x}{y+2x}\right) - 5z^2x$$
, $\vec{s} = 2\vec{i} + \vec{j} - 4\vec{k}$, $M(1; 2; 1)$.

8.18.
$$u = \sin^2(z \cdot y) + 2x^2y$$
, $\vec{s} = 5\vec{i} - \vec{j} + \vec{k}$, $M\left(3; 1; \frac{\pi}{4}\right)$.

8.19.
$$u = x^3 y^2 - \ln(5xz + y^2)$$
, $\vec{s} = 4\vec{i} + \vec{j} - \vec{k}$, $M(2; 1; 1)$.

8.20.
$$u = 9^{\frac{x}{2z}} + y^2 x^2$$
, $\vec{s} = -\vec{i} - 2\vec{j} + 4\vec{k}$, $M(1; 1; -1)$.

8.21.
$$u = z^{yx} - \frac{2y - 3z}{4z - 5x}$$
, $\vec{s} = 3\vec{i} + \vec{j} - \vec{k}$, $M(-1; 2; 2)$.

8.22.
$$u = y \cdot \sin(z \cdot e^{-x}) + y^2 x$$
, $\vec{s} = 2\vec{i} - \vec{j} + 4\vec{k}$, $M(1; -1; \pi e)$.

8.23.
$$u = \arccos \frac{1 - xy}{\sqrt{1 + x^2 y^2}} - \frac{z}{y}, \quad \vec{s} = 5\vec{i} + \vec{j} + \vec{k}, \quad M(0; 1; 2).$$

8.24.
$$u = e^{\frac{x}{yz}} + \sin(z^2 \cdot y), \quad \vec{s} = 2\vec{i} + \vec{j} + \vec{k}, \quad M\left(4; \frac{\pi}{2}; 1\right).$$

8.25.
$$u = \arctan \frac{2x + y - x^2y}{1 - 2xy - x^2} + z^2$$
, $\vec{s} = 5\vec{i} - \vec{j} - \vec{k}$, $M(1; 2; 1)$.

8.26.
$$u = x^4 + y^4 + z^4 - x^2 y^2 z^2$$
, $\vec{s} = \vec{i} + 8\vec{j} - 5\vec{k}$, $M(2; 2; -1)$.

8.27.
$$u = xyz - \ln \frac{x}{2z}$$
, $\vec{s} = -\vec{i} - \vec{j} + 3\vec{k}$, $M(-4; 1; -2)$.

8.28.
$$u = \arctan \frac{xy}{\sqrt{1+x^2+y^2}} + e^{zx}, \quad \vec{s} = \vec{i} + 3\vec{j} - \vec{k}, \quad M(1; 2; -2).$$

8.29.
$$u = e^{xyz} - \cos\left(\frac{x}{y^2}\right), \quad \vec{s} = -2\vec{i} - 2\vec{j} + 5\vec{k}, \quad M\left(\frac{\pi}{2}; 1; \frac{2}{\pi}\right).$$

8.30.
$$u = \ln \sqrt{x^2 + y^2} - \arctan \frac{z}{x}$$
, $\vec{s} = 5\vec{i} + 3\vec{j} - \vec{k}$, $M(2; 2; 4)$.

Задание 9. Найти локальные экстремумы функции z = f(x, y).

9.1.
$$z = (x-2)^2 + 4y^2$$
. 9.2. $z = (x-3)^2 + (y+5)^2$. 9.3. $z = x^2 + 2y^2 - 4x + 12y$.

9.4.
$$z = 2x^2 + (y - 6)^2$$
. 9.5. $z = x^2 + 4xy - 2x$. 9.6. $z = 5xy - y^2 + 6y$.

9.7.
$$z = x^3 + 3xy^2 - 51x$$
. 9.8. $z = 4(x-5)^2 + 8(y+2)^2$. 9.9. $z = 3x^2 - 4xy - 8y$.

9.10.
$$z = x^4 + y^4 - 4xy$$
. 9.11. $z = xy^2(2 - x - y)$ 9.12. $z = x^2 + y^2 - 2\ln x$.

9.13.
$$z = 2xy - \frac{4}{x} - \frac{2}{y}$$
. 9.14. $z = (2x+4)^2 - (3y-6)^2$. 9.15. $z = 2 - \sqrt[3]{x^2 + y^2}$.

9.16.
$$z = 3x^2 - x^3 + 3y^2 + 4y$$
. 9.17. $z = \frac{2}{x} + \frac{2}{y} - xy$. 9.18. $z = 3x^2 - 4xy - 8y$.

9.19.
$$z = xy^2 - yx^2 - 4x$$
. 9.20. $z = 5x^2y - 4xy$. 9.21. $z = xy + 2y^2 - 2x$.

9.22.
$$z = xy + 4x - 3y$$
.

9.23.
$$z = x^2 + y^2 + y$$
. 9.24. $z = 3x^2 + 2xy + y^2$.

9.25.
$$z = 5x^2 - 3xy + y^2 + 4$$
.

9.26.
$$z = x^2 + xy - x - y$$
. 9.27. $z = \frac{1}{2}x^2 - xy$.

9.28.
$$z = 5x^2 + y^2 - 25xy$$
.

9.29.
$$z = 4x - x^2 + 2xy - y^2$$
.

$$9.30. \ z = 4x^2 - 5xy + 3y^2.$$

ЛИТЕРАТУРА

- 1. Карасев, А.И. Курс высшей математики для экономических вузов: учебное пособие для студентов экономических специальностей: в 2 ч. / А.И. Карасев, З.М. Аксютина, Т.И. Савельева. М.: Высшая школа, 1982. Ч. 1, 2.
- 2. Пискунов, Н.С. Дифференциальное и интегральное исчисление для вузов: учебное пособие для студентов вузов: в 2 ч. /Н.С. Пискунов. М.: Наука, 1985. Ч. 1, 2.
- 3. Герасимович, А.И. Математический анализ: в 2 ч. / А.И. Герасимович, Н.А. Рысюк. – Минск: Вышэйшая школа, 1989. – Ч. 1, 2.
- 4. Апатенок, Р.Ф. Элементы линейной алгебры и аналитической геометрии/Р.Ф. Апатенок [и др]. Минск: Вышэйшая школа, 1986.
- 5. Апатенок, Р.Ф. Сборник задач по линейной алгебре / Р.Ф. Апатенок [и др]. Минск: Вышэйшая школа, 1986.
- 6. Гусак, А.А. Задачи и упражнения по высшей математике: в 2 ч. / А.А. Гусак: для вузов. Минск: Вышэйшая школа, 1988.

СОДЕРЖАНИЕ

Тема 1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ	3
1.1. Решение невырожденных систем линейных уравнений	3 6
Задание 1	
Тема 2. ВЕКТОРНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ	13
2.1. Векторы. Скалярное, векторное и смещанное произведение векторов	
Задание 3	18
Тема 3. ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ.	
ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ	
ПЕРЕМЕННОЙ	19
3.1. Предел функции. Основные способы вычисления пределов	26
Задание 4	34 37
Тема 4. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ	
НЕСКОЛЬКИХ ПЕРЕМЕННЫХ	38
4.1. Понятие функции нескольких переменных и ее предела	42
Задание 8Задание 9	44 46
ΠΛΤΕΡΑΤΌΡΑ	48