Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра высшей математики № 1

РЯДЫ

Методическое пособие по высшей математике

Минск БНТУ 2011 УДК 517.5 ББК 22.16 Р 98

Авторы: Г.К. Воронович, И.Н. Катковская, Г.И. Лебедева, Е.В. Сагарда

Рецензенты: В.Г. Кротов, Е.А. Федосик

Р 98 Ряды: методическое пособие по высшей математике / Г.К. Воронович [и др.]. – Минск: БНТУ, 2011.-63 с.

ISBN 978-985-525-421-9.

Методическое пособие составлено в соответствии с программой курса высшей математики для инженерных специальностей. В нем дан краткий теоретический материал, приведены задания для аудиторной и домашней работы, а также примеры решения. Весь материал разбит на занятия.

УДК 517.5 ББК 22.16

Оглавление

Занятие 1.	Числовые ряды. Основные определения.	
	Признаки сходимости рядов	
	с положительными членами	4
Занятие 2.	Знакопеременные ряды. Абсолютная	
	и условная сходимость. Знакочередующиеся	
	ряды. Признак Лейбница	15
Занятие 3.	Функциональные ряды	20
Занятие 4.	Степенные ряды	29
Занятие 5.	Ряды Фурье	44
Занятие 6.	Ряды Тейлора и Лорана.	
	Классификация особых точек	53

ЗАНЯТИЕ 1

Числовые ряды. Основные определения. Признаки сходимости рядов с положительными членами

Пусть задана бесконечная последовательность чисел

$$a_1, a_2, a_3, \ldots, a_n \ldots$$

Числовым рядом называется символ

$$a_1 + a_2 + a_3 + ... + a_n + ... = \sum_{n=1}^{\infty} a_n$$
.

Числа a_1 , a_2 , a_3 ,..., a_n называются членами ряда, число a_n – общим членом ряда, а суммы $S_n=a_1+a_2+a_3+...+a_n$ – частичными суммами ряда.

В следующем определении мы придадим смысл сумме бесконечного числа слагаемых.

Числовой ряд называется **сходящимся**, если существует предел последовательности его частичных сумм: $S = \lim_{n \to \infty} S_n$,

при этом число S называется **суммой ряда**. Если же $\lim_{n\to\infty} S_n$

не существует, то числовой ряд называется расходящимся.

Необходимый признак сходимости. Если ряд $\sum_{n=1}^{\infty} a_n$ сходимся, то $\lim_{n \to \infty} a_n = 0$.

Следствие.
$$Ecnu \lim_{n\to\infty} a_n \neq 0$$
, то ряд $\sum_{n=1}^{\infty} a_n$ расходится.

Признаки сходимости рядов с положительными членами

- **1.** Признак сравнения. Пусть $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ ряды с положительными членами, причем начиная с некоторого номера $a_n \leq b_n$. Тогда:
 - 1) если ряд $\sum\limits_{n=1}^{\infty}b_{n}$ сходится, то сходится и ряд $\sum\limits_{n=1}^{\infty}a_{n}$,
 - 2) если ряд $\sum_{n=1}^{\infty} a_n$ расходится, то расходится и ряд $\sum_{n=1}^{\infty} b_n$.
 - 2. Признак сравнения в предельной форме. $\Pi y cmb \sum_{n=1}^{\infty} a_n$

 $u\sum_{n=1}^{\infty}b_{n}$ ряды с положительными членами, причем существует конечный отличный от нуля предел

$$\lim_{n\to\infty}\frac{a_n}{b_n}.$$

Тогда ряды $\sum\limits_{n=1}^{\infty}a_n$ и $\sum\limits_{n=1}^{\infty}b_n$ сходятся или расходятся одновременно.

При использовании признаков сравнения, в качестве одного из рядов выбирается конкретный ряд. Чаще всего для этого используется ряд

$$\sum_{n=0}^{\infty} aq^n = a + aq + aq^2 + \dots + aq^n + \dots,$$

члены которого образуют геометрическую прогрессию со знаменателем q. Если $|q| \ge 1$, то этот ряд расходится, если же

$$\left|q\right|$$
 < 1 , то он сходится и его сумма равна $S=\frac{a}{1-q}$.

3. Признак Даламбера. Пусть $\sum_{n=1}^{\infty} a_n - p \operatorname{Я} \partial c$ положительными членами и существует конечный предел

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=l.$$

Тогда:

- l) если l < 1 ряд сходится,
- 2) l > 1 ряд расходится.

Eсли l=1, то ряд может, как сходиться, так и расходиться. В этом случае необходимо применить другие признаки сходимости.

Другой часто встречающийся ряд для сравнения – ряд Дирихле

$$\sum_{n=1}^{\infty} \frac{1}{n^p},$$

который сходится при p > 1 и расходится при 0 .

Приведем еще несколько формулировок часто используемых признаков.

4. Признак Коши. Пусть $\sum_{n=1}^{\infty} a_n - p \operatorname{Я} d c$ положительными членами и существует предел $\lim_{n \to \infty} \sqrt[n]{a_n} = l$.

Тогда

- l) если l < 1 ряд сходится,
- 2) l > 1 ряд расходится.

В случае l=1 этот признак не работает — ряд может, как сходиться, так и расходиться, и тогда надо обращаться к другим признакам.

5. Интегральный признак Коши. Пусть функция f(x) положительная, монотонно убывающая функция на $[1, +\infty)$.

Тогда ряд $\sum_{n=1}^{\infty} f(n)$ и интеграл $\int_{1}^{\infty} f(x) dx$ сходятся или расходятся одновременно.

Примеры

1. Исходя из определения суммы, установить, сходятся ли следующие ряды

a)
$$1+3+5+...+(2n-1)+...$$
; 6) $1+\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+...$

Решение

а) Члены ряда представляют собой арифметическую прогрессию с первым членом $a_1 = 1$ и разностью d = 2. По формуле нахождения суммы первых n членов прогрессии находим

$$S_n = \frac{a_1 + a_n}{2} \cdot n = \frac{1 + (2n - 1)}{2} \cdot n = n^2$$
.

Найдем $\lim_{n\to\infty} S_n = \lim_{n\to\infty} n^2 = \infty$. Следовательно, ряд расходится.

б) Члены ряда представляют собой геометрическую прогрессию с первым членом a=1 и знаменателем $q=\frac{1}{4}$. Так как q<1 , то ряд сходится и его сумма

$$S = \frac{a}{1-q} = \frac{1}{1-\frac{1}{4}} = \frac{4}{3}$$
.

2. Установить расходимость, используя необходимый признак сходимости

a)
$$\sum_{n=1}^{\infty} \frac{n+2}{3n+5}$$
; 6) $\sum_{n=1}^{\infty} \frac{n+4}{\ln(n+5)}$.

Решение

a)
$$\lim_{n\to\infty} \frac{n+2}{3n+5} = \lim_{n\to\infty} \frac{1+\frac{2}{n}}{3+\frac{5}{n}} = \frac{1}{3} \neq 0$$
 – ряд расходится.

$$\lim_{n\to\infty}\frac{n+4}{\ln(n+5)}=(\text{применим правило Лопиталя})=$$

б) =
$$\lim_{n \to \infty} \frac{(n+4)'}{(\ln(n+5))'} = \lim_{n \to \infty} \frac{1}{\frac{1}{n+5}} =$$
$$= \lim_{n \to \infty} (n+5) = \infty \neq 0 - \text{ряд расходится.}$$

3. Используя признаки сравнения, установить, сходятся ли ряды

a)
$$\sum_{n=1}^{\infty} \frac{1}{n+7^n}$$
; 6) $\sum_{n=1}^{\infty} \frac{n^2+1}{n^5+4n+2}$; B) $\sum_{n=1}^{\infty} \sin \frac{1}{n}$.

Решение

а) Сравним исходный ряд $\sum_{n=1}^{\infty} \frac{1}{n+7^n}$ с рядом $\sum_{n=1}^{\infty} \frac{1}{7^n}$

$$\frac{1}{n+7^n} < \frac{1}{7^n} .$$

Так как ряд $\sum_{n=1}^{\infty} \frac{1}{7^n}$ сходится, как геометрический ряд со знаменателем $q = \frac{1}{7} < 1$, то по первому признаку сравнения исходный ряд $\sum_{n=1}^{\infty} \frac{1}{n+7^n}$ также будет сходиться.

Отметим, что, если бы в качестве сравнения, мы выбрали расходящийся гармонический ряд $\sum_{n=1}^{\infty} \frac{1}{n}$, то с помощью грубого неравенства $\frac{1}{n+7^n} < \frac{1}{n}$ мы не могли бы сделать вывод о сходимости или расходимости ряда $\sum_{n=1}^{\infty} \frac{1}{n+7^n}$.

б) Применим второй признак сходимости и сравним исходный ряд с рядом $\sum_{n=1}^{\infty} \frac{1}{n^3}$.

$$\lim_{n \to \infty} \left(\left(\frac{n^2 + 1}{n^5 + 4n + 2} \right) \div \frac{1}{n^3} \right) = \lim_{n \to \infty} \frac{n^5 + n^3}{n^5 + 4n + 2} = \left[\frac{\infty}{\infty} \right] =$$

$$= \lim_{n \to \infty} \frac{1 + \frac{1}{n^2}}{1 + \frac{4}{n^4} + \frac{2}{n^5}} = 1.$$

Так ряд $\sum_{n=1}^{\infty} \frac{1}{n^3}$ сходится как ряд Дирихле с p=3, то и $\sum_{n=1}^{\infty} \frac{n^2+1}{n^5+4n+2}$ также будет сходиться.

в) Сравним исходный ряд с рядом $\sum_{n=1}^{\infty} \frac{1}{n}$. Применим признак

сходимости в предельной форме $\lim_{n\to\infty}\frac{\sin\frac{1}{n}}{\frac{1}{n}}=1$ (первый заме-

чательный предел).

Так как ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ расходится (гармонический ряд), то и ряд $\sum_{n=1}^{\infty} \sin \frac{1}{n}$ будет расходиться.

4. Исследовать ряды на сходимость, применяя признак Даламбера:

a)
$$\sum_{n=1}^{\infty} \frac{n}{5^n}$$
; 6) $\sum_{n=1}^{\infty} \frac{n!}{2^n}$;

а) Для ряда
$$\sum_{n=1}^{\infty} \frac{n}{5^n}$$
; $a_n = \frac{n}{5^n}$; $a_{n+1} = \frac{n+1}{5^{n+1}}$.

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \left(\frac{n+1}{5^{n+1}} : \frac{n}{5^n} \right) = \lim_{n \to \infty} \frac{(n+1) \cdot 5^n}{n \cdot 5^{n+1}} =$$

$$= \frac{1}{5} \lim_{n \to \infty} \frac{n+1}{n} = \frac{1}{5} \lim_{n \to \infty} \frac{1 + \frac{1}{n}}{1} = \frac{1}{5} < 1.$$

Следовательно, ряд сходится.

б) Для ряда
$$\sum_{n=1}^{\infty} \frac{n!}{2^n} \ a_n = \frac{n!}{2^n}; \ a_{n+1} = \frac{(n+1)!}{2^{n+1}}.$$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \left(\frac{(n+1)!}{2^{n+1}} \div \frac{n!}{2^n} \right) = \lim_{n \to \infty} \frac{(n+1)! \cdot 2^n}{2^{n+1} \cdot n!} =$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{(n+1)!}{n!} = \frac{1}{2} \lim_{n \to \infty} \frac{n! \cdot (n+1)}{n!} = \infty.$$

Следовательно, ряд расходится.

5. Исследовать ряды на сходимость, применяя признак Коши:

a)
$$\sum_{n=1}^{\infty} \left(\frac{2n-1}{3n+1}\right)^n$$
; 6) $\sum_{n=1}^{\infty} \left(1+\frac{1}{n}\right)^{n^2}$.

a)
$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{\left(\frac{2n-1}{3n+1}\right)^n} = \lim_{n \to \infty} \frac{2n-1}{3n+1} = \lim_{n \to \infty} \left(\frac{2-\frac{1}{n}}{3+\frac{1}{n}}\right) = \frac{2}{3} < 1.$$

Следовательно, ряд сходится.

б)
$$\lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \sqrt[n]{\left(1+\frac{1}{n}\right)^{n^2}} = \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e > 1$$
. Следовательно, ряд расходится.

6. Исследовать ряд на сходимость, применяя интегральный признак Коши $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$.

Решение

Так как
$$a_n = \frac{1}{n \ln n}$$
, то $f(x) = \frac{1}{x \ln x}$.

Проверим применимость признака Коши. На промежутке $[2, +\infty) f(x)$, принимает только положительные значения и является монотонно убывающей. Поэтому можно применить интегральный признак.

$$\int_{2}^{+\infty} \frac{dx}{x \ln x} = \lim_{A \to \infty} \int_{2}^{A} \frac{dx}{x \ln x} = \lim_{A \to \infty} (\ln \ln x) \Big|_{2}^{A} = \lim_{A \to \infty} (\ln \ln A - \ln \ln 2) = \infty.$$

Так как несобственный интеграл $\int\limits_{2}^{+\infty} \frac{dx}{x \ln x}$ расходится, то

расходится и ряд $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$.

Аудиторные занятия

1. Установить, сходятся ли указанные ряды, исходя из определения суммы ряда:

1.1.
$$1 + \frac{2}{3} + \frac{4}{9} + \dots + \frac{8}{27} + \dots$$
 (Отв. Сходится)

1.2.
$$2+6+10+14+18+\cdots$$
 (Отв. Расходится)

1.3.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+3)}$$
 (Отв. Сходится)

2. Установить, сходятся ли ряды, используя необходимый признак сходимости ряда:

2.1.
$$\sum_{n=1}^{\infty} \frac{2n+1}{2n+2}$$
 (Отв. Расходится)

2.2.
$$\sum_{n=1}^{\infty} \sqrt{\frac{n+1}{n+2}}$$
 (Отв. Расходится)

2.3.
$$\sum_{n=1}^{\infty} \left(1 + \frac{5}{n}\right)^n$$
 (Отв. Расходится)

2.4.
$$\sum_{n=1}^{\infty} \frac{n^2 + 1}{(n+1)^3}$$
 (Отв. Ряд может сходиться и расходиться)

2.5.
$$\sum_{n=1}^{\infty} \cos \frac{1}{n}$$
 (Отв. Расходится)

2.6.
$$\sum_{n=1}^{\infty} \frac{n^2+2}{n+1}$$

(Отв. Расходится)

3. Установить, сходятся ли ряды, используя признаки сравнения:

$$3.1. \sum_{n=1}^{\infty} \frac{5^n + 1}{2^n}$$

(Отв. Расходится)

3.2.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 6}$$

(Отв. Сходится)

3.3.
$$\sum_{n=1}^{\infty} \frac{1}{n+5^n}$$

(Отв. Сходится)

3.4.
$$\sum_{n=1}^{\infty} \frac{2^k}{1+2^{2k}}$$

(Отв. Сходится)

3.5.
$$\sum_{n=1}^{\infty} \frac{n+1}{n^2+1}$$

(Отв. Расходится)

3.6.
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n^2+1}}$$

(Отв. Сходится)

4. Установить, сходятся ли ряды, используя признаки Даламбера и Коши:

4.1.
$$\sum_{n=1}^{\infty} \frac{n^3}{(n+1)!}$$

(Отв. Сходится)

4.2.
$$\sum_{n=1}^{\infty} \frac{2^n}{n^2}$$

(Отв. Расходится)

4.3.
$$\sum_{n=1}^{\infty} \frac{1}{2^n} \left(\frac{n+1}{n} \right)^{n^2}$$

(Отв. Расходится)

4.4.
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)\ln(n+1)}$$

(Отв. Расходится)

4.5.
$$\sum_{n=2}^{\infty} \frac{1}{(\ln n)^n}$$

(Отв. Сходится)

$$4.6. \quad \sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$$

(Отв. Расходится)

Домашние задания

1. Установить, сходятся ли указанные ряды, исходя из определения суммы ряда:

1.1.
$$\sum_{n=1}^{\infty} \frac{1}{3^{n-1}}$$

(Отв. Сходится)

1.2.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$$

(Отв. Сходится)

2. Установить, сходятся ли указанные ряды:

2.1.
$$\sum \frac{10n+1}{10n+5}$$

(Отв. Расходится)

2.2.
$$\sum_{n=1}^{\infty} \frac{n+2}{n^2+n+1}$$

(Отв. Расходится)

2.3.
$$\sum_{n=1}^{\infty} \frac{1}{3^n + n}$$

(Отв. Сходится)

2.4.
$$\sum_{n=1}^{\infty} \frac{7^n + 1}{5^n}$$

(Отв. Расходится)

$$2.5. \sum_{n=1}^{\infty} \arcsin \frac{1}{\sqrt{n}}$$

(Отв. Расходится)

$$2.6. \quad \sum_{n=1}^{\infty} \operatorname{tg} \frac{1}{n\sqrt{n}}$$

(Отв. Сходится)

2.7.
$$\sum_{n=1}^{\infty} \frac{1}{(n+4)!}$$

(Отв. Сходится)

2.8.
$$\sum_{n=1}^{\infty} \left(\frac{5n+6}{3n-4} \right)^n$$
 (Отв. Сходится)

2.9.
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)\ln^2(n+1)}$$
 (Отв. Сходится)

2.10.
$$\sum_{n=1}^{\infty} \frac{n+2}{n \cdot 4^n}$$
 (Отв. Сходится)

2.11.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n!}$$
 (Отв. Сходится)

2.12.
$$\sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{2}{5}\right)^n$$
 (Отв. Сходится).

ЗАНЯТИЕ 2

Знакопеременные ряды. Абсолютная и условная сходимость. Знакочередующиеся ряды. Признак Лейбница

Ряд $\sum_{n=1}^{\infty} a_n$ называется **знакопеременным**, если он содержит как положительные, так и отрицательные члены.

Если ряд $\sum_{n=1}^{\infty} |a_n|$, сходится, то и ряд $\sum_{n=1}^{\infty} a_n$ сходится. В этом

случае знакопеременный ряд $\sum_{n=1}^{\infty} a_n$ называется **абсолютно сходящимся**.

Если же знакопеременный ряд $\sum_{n=1}^{\infty} a_n$ сходится, а ряд $\sum_{n=1}^{\infty} |a_n|$

расходится, то ряд $\sum_{n=1}^{\infty} a_n$ называется условно сходящимся.

Ряд

$$\sum_{n=1}^{\infty} (-1)^n a_n = -a_1 + a_2 - a_3 + a_4 + \dots + (-1)^n a_n \dots,$$

где $a_n > 0$, n = 1, 2, ... называется знакочередующимся.

Признак Лейбница. Если члены знакочередующегося ряда

$$\sum_{n=1}^{\infty} (-1)^n a_n ,$$

где $a_n > 0$, n = 1, 2, ... удовлетворяют двум условиям:

- 1) $a_1 > a_2 > a_3 ... > a_n >$;
- 2) $\lim_{n\to\infty} a_n = 0$,

то ряд сходится.

Примеры

1. Исследовать сходимость рядов:

a)
$$\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$$
; 6) $\sum_{n=1}^{\infty} (-1)^n \frac{n}{3^n}$; b) $\sum_{n=1}^{\infty} (-1)^n \frac{3n-1}{3n+2}$; $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$.

а) Этот ряд является знакопеременным. Исследуем на сходимость ряд $\sum_{n=1}^{\infty} \left| \frac{\sin n}{n^2} \right|$, применяя к этому ряду первый признак сходимости. Сравним исходный ряд c_0 сходящимся рядом Дирихле $\sum_{n=1}^{\infty} \frac{1}{n^2}$, (p=2>1).

$$\left|\frac{\sin n}{n^2}\right| < \frac{1}{n^2}.$$

Следовательно, ряд $\sum_{n=1}^{\infty} \frac{|\sin n|}{n^2} - \cos n$ сходится, и, значит, ряд $\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$ сходится абсолютно.

б) Ряд $\sum_{n=1}^{\infty} (-1)^n \frac{n}{3^n}$ является знакопеременным. Исследуем ряд, $\sum_{n=1}^{\infty} \frac{n}{3^n}$, составленный из модулей, по признаку Даламбера:

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \left(\frac{(n+1)}{3^{n+1}} \div \frac{n}{3^n} \right) = \lim_{n \to \infty} \frac{(n+1) \cdot 3^n}{3^{n+1} \cdot n} =$$

$$= \frac{1}{3} \lim_{n \to \infty} \frac{(n+1)}{n} = \frac{1}{3} \lim_{n \to \infty} \frac{1 + \frac{1}{n}}{1} = \frac{1}{3} < 1,$$

следовательно, ряд $\sum_{n=1}^{\infty} \frac{3^n}{n}$ сходится, и, значит, исходный ряд $\sum_{n=1}^{\infty} (-1)^n \frac{n}{3^n}$ сходится абсолютно.

в) Ряд $\sum_{n=1}^{\infty} (-1)^n \frac{3n-1}{3n+2}$ является знакопеременным. Применим к ряду $\sum_{n=1}^{\infty} \frac{3n-1}{3n+2}$, составленному из модулей, необходимый признак сходимости:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{3n-1}{3n+2} = \lim_{n \to \infty} \frac{3-\frac{1}{n}}{3+\frac{2}{n}} = 1 \neq 0,$$

следовательно, ряд расходится, а значит, исходный ряд $\sum_{n=1}^{\infty} (-1)^n \frac{3n-1}{3n+2}$ не обладает абсолютной сходимостью. Иссле-

дуем знакочередующийся ряд $\sum_{n=1}^{\infty} (-1)^n \frac{3n-1}{3n+2}$ по признаку Лейбница. Так как не выполняется второе условие, а именно $\lim_{n\to\infty} a_n \neq 0$, то исходный ряд расходится.

г) Ряд $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ — знакопеременный. Ряд $\sum_{n=1}^{\infty} \frac{1}{n}$, составленный из модулей, — гармонический расходящийся ряд. Значит, ряд $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ не обладает абсолютной сходимостью.

Исследуем знакочередующийся ряд $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ по признаку Лейбница. Проверим два условия:

$$1. \ a_1 > a_2 > a_3... > a_n > a_{n+1}...$$
 $\frac{1}{n} > \frac{1}{n+1}, \text{ для } \forall n = 1, 2, 3,...$
 $2. \ \lim_{n \to \infty} a_n = 0;$
 $\lim_{n \to \infty} \frac{1}{n} = 0.$

Так как два условия выполняются, то ряд $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ является условно сходящимся.

Аудиторные задания

1. Исследовать на абсолютную и условную сходимость следующие ряды.

1.1.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{(3n-1)!}$$

(Отв. Сходится абсолютно)

1.2.
$$\sum_{n=1}^{\infty} (-1)^n \frac{2n^2 - 1}{5 + n^2}$$

(Отв. Расходится)

1.3.
$$\sum_{n=1}^{\infty} \frac{(-1)^n (3n+1)}{n(n+2)}$$

(Отв. Сходится условно)

1.4.
$$\sum_{n=2}^{\infty} (-1)^n \frac{1}{n \ln^2 n}$$

(Отв. Сходится абсолютно)

1.5.
$$\sum_{n=1}^{\infty} (-1)^n \ln \left(1 + \frac{1}{n} \right)$$

(Отв. Сходится условно)

1.6.
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{3n}{3n+1} \right)^n$$

(Отв. Расходится)

1.7.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n+3^n}$$

(Отв. Сходится абсолютно)

1.8.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

(Отв. Сходится условно)

1.9.
$$\sum_{n=1}^{\infty} \frac{\cos na}{n!}$$

(Отв. Сходится абсолютно)

1.10.
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln n}$$

(Отв. Сходится условно)

Домашнее задание

1. Исследовать на абсолютную и условную сходимость ряды:

1.1.
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$

(Отв. Сходится абсолютно)

1.2.
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{10n+1}{10n-1} \right)$$

(Отв. Расходится)

1.3.
$$\sum_{n=1}^{\infty} (-1)^n \frac{(-1)^n (6n-5)}{10^n}$$
 (Отв. Сходится абсолютно)

1.4.
$$\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n}$$
 (Отв. Сходится условно)

1.5.
$$\sum_{n=1}^{\infty} (-1)^n \sin \frac{1}{n^2}$$
 (Отв. Сходится абсолютно)

1.6.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\ln(n+1)}$$
 (Отв. Сходится условно)

1.7.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{4n}{5n+3} \right)^n$$
 (Отв. Сходится абсолютно)

ЗАНЯТИЕ 3

Функциональные ряды

Функциональным называется ряд, членами которого являются функции:

$$\sum_{n=1}^{\infty} U_n(x) = U_1(x) + U_2(x) + \dots + U_n(x) + \dots,$$
 (3.1)

где $U_1(x)$, $U_2(x)$, $U_3(x)$,... – заданная последовательность функций.

При фиксированном значении $x = x_0$ функциональный ряд становится числовым:

$$\sum_{n=1}^{\infty} U_n(x_0) = U_1(x_0) + U_2(x_0) + \dots + U_n(x_0) + \dots$$
 (3.2)

Множество точек, в которых ряд (3.1) сходится, называется **областью сходимости** функционального ряда.

Суммой функционального ряда является функция

$$S(x) = \lim_{n \to \infty} S_n(x) = \lim_{n \to \infty} \sum_{k=1}^n U_k(x).$$

Если ряд (3.2) расходится, то точка $x = x_0$ является точкой расходимости ряда (3.1).

Для определения области сходимости ряда (3.1) можно пользоваться признаками Даламбера и Коши, считая x фиксированным:

по Даламберу:
$$\lim_{n\to\infty} \left| \frac{U_{n+1}(x)}{U_n(x)} \right| < 1$$
; по Коши: $\lim_{n\to\infty} \sqrt[n]{|U_n(x)|} < 1$.

Функциональный ряд называется равномерно сходящимся на промежутке, если для любого $\varepsilon > 0$ существует такой номер N, что при n > N и всех x из рассматриваемого промежутка выполняется неравенство

$$\Big|\sum_{k=n+1}^{\infty}U_k(x)\Big|<\varepsilon.$$

В этом определении важно то, что номер N зависит лишь от $\varepsilon > 0$, но не зависит от выбора x.

Признак Вейерштрасса. Функциональный ряд (3.1) сходится абсолютно и равномерно на некотором промежутке, если существует сходящийся числовой ряд с положительными членами

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_n + \dots$$
 (3.3)

такой, что $|U_n(x)| \le a_n \ (n=1,2,...)$ для всех x из данного промежутка.

Ряд (3.3) в этом случае называется **мажорантным** для ряда (3.1).

Свойства функциональных рядов

- 1. Сумма равномерно сходящегося ряда функций, непрерывных в замкнутом промежутке [a,b], есть функция, непрерывная в данном промежутке.
- 2. Если члены ряда (3.1) непрерывны в замкнутом промежутке [a, b] и этот ряд сходится равномерно на [a, b], то его

$$\int_{a}^{b} \left(\sum_{n=1}^{\infty} U_{n}(x) \right) dx = \sum_{n=1}^{\infty} \int_{a}^{b} U_{n}(x) dx$$

(другими словами, возможно почленное интегрирование ряда).

3. Если члены ряда (3.1) имеют непрерывные производные в замкнутом промежутке [a,b] и ряд $\sum_{n=1}^{\infty} U_n'(x)$ равномерно сходится на [a,b], то ряд

$$\left(\sum_{n=1}^{\infty} U_n(x)\right)' = \sum_{n=1}^{\infty} U'_n(x).$$

(другими словами, возможно почленное дифференцирование ряда).

4. Если ряд (3.1) сходится равномерно в некоторой области и каждый член ряда имеет конечный предел $\lim_{x\to a} U_n(x) = C_n$, где a — предельная точка данной области, то к пределу можно перейти почленно:

$$\lim_{x \to a} \sum_{n=1}^{\infty} U_n(x) = \sum_{n=1}^{\infty} \lim_{x \to a} U_n(x).$$

Примеры

1. Найти область сходимости ряда $\sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{x+1}{x+3} \right)^n$.

Решение. Считая x фиксированным, применим к исходному ряду признак Даламбера: $U_n(x) = \frac{1}{n} \left(\frac{x+1}{x+3} \right)^n$, $U_{n+1} = \frac{1}{n+1} \left(\frac{x+1}{x+3} \right)^{n+1}$.

Тогда
$$\lim_{n \to \infty} \left| \frac{U_{n+1}(x)}{U_n(x)} \right| = \lim_{n \to \infty} \left| \frac{\frac{1}{n+1} \left(\frac{x+1}{x+3} \right)^{n+1}}{\frac{1}{n} \left(\frac{x+1}{x+3} \right)^n} \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right) \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \cdot \left(\frac{x+1}{x+3} \right$$

$$= \left| \frac{x+1}{x+3} \right| \lim_{n \to \infty} \left| \frac{n}{n+1} \right| = \left| \frac{x+1}{x+3} \right|.$$

Ряд сходится при $\left| \frac{x+1}{x+3} \right| < 1$.

Решаем полученное неравенство:

$$\begin{cases} \frac{x+1}{x+3} < 1 & \begin{cases} \frac{x+1}{x+3} - 1 < 0 \\ \frac{x+1}{x+3} > -1 \end{cases} \Leftrightarrow \begin{cases} \frac{x+1}{x+3} + 1 > 0 \end{cases} \Leftrightarrow \begin{cases} \frac{x+1+x+3}{x+3} < 0 \\ \frac{x+1+x+3}{x+3} > 0 \end{cases} \Leftrightarrow \begin{cases} \frac{-2}{x+3} < 0 \\ \frac{2x+4}{x+3} > 0 \end{cases} \Leftrightarrow \begin{cases} \frac{x+2}{x+3} > 0 \end{cases}$$

Проверим поведение ряда при x = -2. Имеем

$$\sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{-1}{1} \right)^n = \sum_{n=1}^{\infty} (-1)^n \frac{1}{n}.$$

Проверим выполнение условий признака Лейбница.

- 1) $|U_1| = 1 > |U_2| = \frac{1}{2} \Rightarrow$ 1-ое условие выполняется.
- 2) $\lim_{n\to\infty} (U_n) = \lim_{n\to\infty} \frac{1}{n} = 0 \Rightarrow$ 2-ое условие выполняется.

Следовательно, по признаку Лейбница этот ряд сходится, а точка x = -2 включается в область сходимости исходного ряда. Т. е. областью сходимости является промежуток $[-2; +\infty)$.

2. Найти область сходимости ряда $\sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \left(\frac{x-2}{4x+1} \right)^n$.

Решение. Применим признак Коши:

$$\lim_{n \to \infty} \sqrt[n]{|U_n(x)|} = \lim_{n \to \infty} \sqrt[n]{\frac{1}{2^n} \left(\frac{x-2}{4x+1}\right)^n} = \left|\frac{x-2}{4x+1}\right| \lim_{n \to \infty} \frac{1}{2} = \left|\frac{x-2}{4x+1}\right| \cdot \frac{1}{2}.$$

Ряд будет сходиться при $\left| \frac{x-2}{4x+1} \right| \cdot \frac{1}{2} < 1$.

Из полученного неравенства имеем:

$$\begin{cases} \frac{x-2}{4x+1} \cdot \frac{1}{2} < 1 \\ \Rightarrow \begin{cases} \frac{x-2}{8x+2} - 1 < 0 \\ \Rightarrow \begin{cases} \frac{x-2-8x-2}{8x+2} < 0 \\ \Rightarrow \begin{cases} \frac{-8x-4}{8x+2} > 0 \end{cases} \\ \Rightarrow \begin{cases} \frac{x-2+8x+2}{8x+2} > 0 \end{cases} \end{cases}$$

Ряд сходится при
$$x \in \left(-\infty; -\frac{1}{4}\right) \cup \left(0; +\infty\right)$$
.

Проверим поведение ряда на границе. При $x = -\frac{1}{4}$ ряд не определен. Следовательно, эта точка не включается в область сходимости.

При x=0 имеем $\sum_{n=1}^{\infty} \left(\frac{-2}{1}\right)^n = \sum_{n=1}^{\infty} (-1)^n \cdot 2^n$. Этот ряд расходится, так как его общий член не сходится к нулю. Поэтому x=0 не принадлежит области сходимости. Итак, область сходимости исходного ряда является $\left(-\infty; -\frac{1}{4}\right) \cup \left(0; +\infty\right)$.

3. Можно ли почленно интегрировать ряд $\sum_{n=1}^{\infty} \frac{1}{x^4 + n^2}$?

Данный ряд равномерно сходится на $(-\infty, +\infty)$, так как для него существует мажорантный ряд $\sum \frac{1}{n^2}$ (ряд Дирихле, $\alpha=2>1$).

Каждый член ряда — непрерывная функция на всей числовой прямой. Следовательно, данный ряд можно почленно интегрировать по любому конечному промежутку.

Аудиторные задания

1. Найти область сходимости ряда:

1.1.
$$\sum_{n=1}^{\infty} \frac{1}{n!} \left(\frac{2x-3}{4x+5} \right)^n \qquad (OTB. \left(-\infty; -\frac{5}{4} \right) \cup \left(-\frac{5}{4}; +\infty \right)).$$

1.2.
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)x^{2n-1}}$$
 (OTB. $(-\infty; -1) \cup (1; +\infty)$).

1.3.
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n \cdot 2^{nx}$$
 (OTB. $(-\infty; 0)$).

1.4.
$$\sum_{n=1}^{\infty} \frac{x^n}{3+x^{2n}}$$
 (OTB. $(-\infty; -1) \cup (-1; 1) \cup (1; +\infty)$).

1.5.
$$(3-x^2)+(3-x^2)^2+(3-x^2)^3+...$$
 (Otb. $(-2;-\sqrt{2})\cup(\sqrt{2};2)$).

1.6.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n^2 + 1}}{n^2 (5x + 9)^{2n - 1}} \qquad \text{(Otb. } \left(-\infty; -2 \right) \cup \left(-\frac{8}{5}; +\infty \right) \text{)}.$$

1.7.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2n-1} \left(\frac{1-x}{1+x}\right)^n$$
 (OTB. $(0; +\infty)$).

1.8.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n \cdot 3^n (x-5)^n} \qquad (\text{Otb.} \left(-\infty; 4\frac{2}{3}\right) \cup \left(5\frac{1}{3}; +\infty\right)).$$

1.9.
$$\sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}$$
 (OTB. $(-\infty; -1) \cup (1; +\infty)$).

1.10.
$$\sum_{n=1}^{\infty} 3n^2 \cdot x^{n^2} \qquad (OTB. \left(-\infty; -\frac{1}{3}\right) \cup \left(\frac{1}{3}; +\infty\right)).$$

1.11.
$$\sum_{n=1}^{\infty} \frac{(x-1)^{2n}}{n \cdot 9^n}$$
 (OTB. (-2; 4)).

1.12.
$$-1 < x < 1$$
 (OTB. $\left(-\frac{5}{2}; +\infty\right)$).

1.13.
$$\sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{x}{x+1} \right)^n \qquad (OTB. \left(-\frac{1}{2}; +\infty \right)).$$

1.14.
$$\sum_{n=1}^{\infty} \frac{1}{1+x^{2n}}$$
 (OTB. $(-\infty; -1) \cup (1; +\infty)$).

1.15.
$$\sum_{n=1}^{\infty} \frac{n x^n}{n^3 + x^{2n}}$$
 (OTB. $(-\infty; +\infty)$).

1.16.
$$\sum_{n=1}^{\infty} ne^{-nx}$$
 (OTB. $(0; +\infty)$).

1.17.
$$\sum_{1=1}^{\infty} \frac{x^n}{1+x^{2n}}$$
 (OTB. $(-\infty; -1) \cup (-1; 1) \cup (1; +\infty)$).

1.18.
$$\sum_{n=0}^{\infty} \left[\frac{x(x+n)}{n} \right]^n$$
 (OTB. $(-1; +1)$).

1.19.
$$\sum_{n=1}^{\infty} \frac{x^n}{1-x^n}$$
 (OTB. $(-1; +1)$).

1.20.
$$\sum_{n=1}^{\infty} \frac{n}{r^n}$$
 (OTB. $(-\infty; -1) \cup (1; +\infty)$).

1.21.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2n-1} \cdot \left(\frac{1-x}{1+x}\right)^n$$
 (OTB. $(0; +\infty)$).

1.22.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^{\ln x}}$$
 (Otb. $(1; +\infty)$).

1.23.
$$\sum_{n=1}^{\infty} \frac{1}{n} \cdot \left(\frac{1+x}{1-x}\right)^n$$
 (OTB. $(-\infty; 0)$).

1.24.
$$\sum_{1=1}^{\infty} \frac{(-1)^n}{\sqrt{n} \cdot x^n}$$
 (OTB. $(-\infty; -1) \cup (1; +\infty)$).

1.25.
$$\sum_{n=1}^{\infty} 2^n \cdot \sin \frac{x}{3^n} \qquad (OTB. \left(-\infty; +\infty\right)).$$

1.26.
$$\sum_{n=1}^{\infty} \frac{n}{100} \cdot \left(\frac{1+x}{1-x}\right)^n$$
 (OTB. $(-\infty; 0)$).

1.27.
$$\sum_{n=1}^{\infty} \frac{2^n \sin^n x}{n^2}$$
 (Otb. $|x - \pi k| \le \frac{\pi}{6}, k \in \mathbb{Z}$).

1.28.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} \cdot \left(\frac{2+x}{2-x}\right)^n$$
 (OTB. $(-\infty; 0)$).

2. Можно ли почленно интегрировать ряд в области его сходимости

2.1.
$$\sum_{n=1}^{\infty} \frac{1}{x^2 + n^2}$$

(Отв. Да).

$$2.2. \sum_{n=1}^{\infty} \frac{\cos nx}{3^n}$$

(Отв. Да).

3. Можно ли почленно дифференцировать ряд в области его сходимости.

3.1.
$$\sum_{n=1}^{\infty} \frac{\cos nx}{n^8}$$

(Отв. Да).

3.2.
$$\sum_{n=1}^{\infty} \frac{\sin nx}{5^n}$$

(Отв. Да).

Домашнее задание

1. Найти область сходимости ряда.

$$1.1. \quad \sum_{n=1}^{\infty} \frac{1}{n^x}$$

(Otb. $(1; +\infty)$).

1.2.
$$\sum_{n=1}^{\infty} n \cdot e^{nx}$$

(Otb. $(-\infty; 0)$).

1.3.
$$\sum_{n=1}^{\infty} \frac{n \cdot x^n}{n^3 + x^{2n}}$$

$$(O_{TB}. (-\infty; +\infty)).$$

1.4.
$$\sum_{n=1}^{\infty} \frac{x^{3n+3}}{(2n+1)8^{n+1}}$$

1.5.
$$\sum_{n=1}^{\infty} 8^{n} \cdot x^{3n} \operatorname{arctg} \frac{x}{n}$$

(Otb.
$$\left[-\frac{1}{2}; \frac{1}{2}\right]$$
).

1.6.
$$\sum_{n=1}^{\infty} e^{-n^2 x}$$

(Otb.
$$(0; +\infty)$$
).

2. Можно ли почленно интегрировать ряд

$$\sum_{n=1}^{\infty} \frac{1}{x^2 + n\sqrt{n}}$$
? (Отв. Да).

3. Можно ли почленно дифференцировать ряд

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n^7} ?$$
 (Отв. Да).

ЗАНЯТИЕ 4

Степенные ряды

Функциональный ряд вида

$$\sum_{n=1}^{\infty} a_n (x-a)^n ,$$

где a_i – действительные числа, называется **степенным.**

Основное свойство степенного ряда состоит в следующем.

Теорема Абеля. Если степенной ряд сходится при $x = x_0$, то он сходится (и притом абсолютно) при всяком значении x, удовлетворяющем неравенству $|x - a| < |x_0 - a|$.

В частности, из теоремы Абеля следует, что для любого степенного ряда обязательно реализуется одна и только одна из трех возможностей:

- 1) ряд сходится только при x = a;
- 2) ряд сходится при любом x;
- 3) существует такое положительное число R, что ряд абсолютно сходится при всех |x-a| < R и расходится при всех |x-a| < R .

В третьем случае число R называется радиусом сходимости степенного ряда, а интервал |x-a| < R — интервалом сходимости. В первом случае считают, что радиус сходимости равен нулю, а во втором $R = \infty$.

На концах интервала сходимости (в точках $x = \pm R$) степенной ряд может вести себя по-разному — возможны любые варианты абсолютной или условной сходимости или расходимости.

Для отыскания интервала и радиуса сходимости степенного ряда можно пользоваться одним из следующих способов.

1. Если среди коэффициентов ряда a_n нет равных нулю, т. е. ряд содержит все целые положительные степени разности (x-a), то

$$R = \lim_{x \to \infty} \left| \frac{a_n}{a_{n+1}} \right|,\tag{4.1}$$

при условии, что предел (конечный или бесконечный) существует.

2. Если исходный ряд имеет вид

$$\sum a_n(x-a)^{np}$$
,

где p — некоторое определенное целое положительное число: 2, 3,...), то

$$R = \sqrt[p]{\lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|} . \tag{4.2}$$

3. Если среди коэффициентов ряда есть равные нулю и последовательность оставшихся в ряде показателей степени разности (x-a) любая (т. е. не образует арифметическую про-

грессию, как в предыдущем случае), то радиус сходимости можно находить по формуле

$$R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}},\tag{4.3}$$

в которой используются значения a_n отличные от нуля. (Эта формула пригодна и для случая 1 и 2).

4. Во всех случаях интервал сходимости можно находить, применяя непосредственно признак Даламбера или признак Коши к ряду, составленному из абсолютных величин членов исходного ряда.

Записав ряд в виде $\sum_{n=1}^{\infty} U_n(x) = \sum_{n=1}^{\infty} a_n (x-a)^n$, интервал сходимости находят из неравенств

$$\lim_{n\to\infty} \left| \frac{U_{n+1}}{U_n} \right| < 1 \quad \text{или} \quad \lim_{n\to\infty} \sqrt[n]{|U_n|} < 1 \, .$$

Отметим следующие свойства степенных рядов.

Ряды, полученные почленным дифференцированием и интегрированием степенного ряда, имеют тот же интервал сходимости, при этом если

$$S(x) = \sum_{n=1}^{\infty} a_n (x-a)^n$$
, to $S'(x) = \sum_{n=1}^{\infty} n a_n (x-a)^{n-1}$,

И

$$\int_{a}^{x} S(x) dx = \sum_{n=1}^{\infty} \frac{a_n (x-a)^{n+1}}{n+1}, \text{ где } -R < x-a < R.$$

Операцию почленного дифференцирования и интегрирования можно производить над степенным рядом сколько угодно раз.

Следовательно, сумма степенного ряда внутри его интервала сходимости является бесконечно дифференцируемой функцией.

Пример 1. Найти область сходимости степенного ряда $\sum_{n=1}^{\infty} \frac{1}{n} \cdot x^n$.

Решение. Находим радиус сходимости ряда:

$$R = \lim_{n \to \infty} \left| \frac{C_n}{C_{n+1}} \right| = \lim_{n \to \infty} \left| \frac{1}{n} : \frac{1}{n+1} \right| = \lim_{n \to \infty} \left| 1 + \frac{1}{n} \right| = 1.$$

Далее, исследуем сходимость ряда при $x=\pm 1$. Если x=1, то данный ряд становится гармоническим рядом $\sum_{n=1}^{\infty}\frac{1}{n}$, который расходится. Если x=-1, то получаем знакочередующийся ряд

$$-1+\frac{1}{2}-\frac{1}{3}+\cdots+(-1)^n\frac{1}{n}+\cdots,$$

который сходится по признаку Лейбница. Итак, область сходимости ряда — полуинтервал $-1 \le x < 1$.

Пример 2. Исследовать сходимость ряда $\sum_{n=1}^{\infty} \frac{1}{n^2} (x-2)^n$.

Решение. Здесь
$$a_n = \frac{1}{n^2}$$
, $a_{n+1} = \frac{1}{(n+1)^2}$, имеем

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{(n+1)^2}{n^2} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^2 = 1.$$

Следовательно, ряд сходится, если -1 < x - 2 < 1, т. е. 1 < x < 3.

Исследуем сходимость ряда на концах промежутка. Если x=3 , то получим ряд $\sum_{n=1}^{\infty}\frac{1}{n^2}$ сходится, как обобщенный ряд

Дирихле $\sum_{n=1}^{\infty} \frac{1}{n^p}$ с показателем степени больше единицы ($\sum_{n=1}^{\infty} \frac{1}{n^p}$ — сходится при p>1, расходится $p\leq 1$).

Если x = 1, то $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^2}$ – сходится и притом абсолютно,

т. к. сходится ряд из абсолютных величин его членов.

Итак, степенной ряд сходится для значений x, удовлетворяющих двойному неравенству $1 \le x \le 3$.

Пример 3. Исследовать сходимость ряда $\sum_{n=1}^{\infty} n!(x-5)^n$.

Решение. Здесь $a_n = n!$ $a_{n+1} = (n+1)!$, тогда

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{n!}{(n+1)!} = \lim_{n \to \infty} \frac{n!}{(n+1)n!} = \lim_{n \to \infty} \frac{1}{n+1} = 0.$$

Следовательно, ряд сходится только при x-5=0, т. е. в точке x=5.

Пример 4. Исследовать на сходимость ряд $\sum_{n+1}^{\infty} \frac{1}{n!} x^n$.

Решение. Здесь
$$a_n = \frac{1}{n!}$$
, $a_{n+1} = \frac{1}{(n+1)!}$, тогда

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{(n+1)!}{n!} = \lim_{n \to \infty} \frac{(n+1)n!}{n!} = \lim_{n \to \infty} (n+1) = \infty.$$

Следовательно, ряд сходится при любом значении x . Отсюда, между прочим, заключаем, что $\lim_{n\to\infty}\frac{x^n}{n!}=0$ при любом x .

Пример 5. Исследовать на сходимость ряд

$$\sum_{n=1}^{\infty} \frac{1}{10^{n-1}} x^{3(n-1)} = 1 + \frac{x^3}{10} + \frac{x^6}{10^2} + \dots + \frac{x^9}{10^3} + \dots$$

Решение. Ряд является геометрической прогрессией со знаменателем $q = \frac{x^3}{10}$. Он сходится, если $\left|\frac{x^3}{10}\right| < 1$, и расходится, если $\left|\frac{x^3}{10}\right| \ge 1$. Следовательно, промежуток сходимости ряда определяется двойным неравенством $-\sqrt[3]{10} < x < \sqrt[3]{10}$. Тот же результат получится, если воспользоваться формулами (4.2) и (4.3).

Пример 6. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{2^n}{2n-1} x^{5n}$.

Решение. Полагая $t=x^5$, получим степенной ряд $\sum_{n=1}^{\infty}\frac{2^n}{2-1}t^n$ и его исследуем на сходимость. Здесь $a_n=\frac{2^n}{2n-1}, \ a_{n+1}=\frac{2^{n+1}}{2n+1},$ тогда

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{2^n (2n+1)}{(2n-1)2^{n+1}} = \frac{1}{2} \lim_{n \to \infty} \frac{2n+1}{2n-1} = \frac{1}{2} \lim_{n \to \infty} \frac{2 + \frac{1}{n}}{2 - \frac{1}{n}} = \frac{1}{2}.$$

Таким образом, ряд сходится, если $|t| < \frac{1}{2}$.

Исследуем сходимость ряда на концах промежутка. При $t=\frac{1}{2}$ имеем $\sum_{n=1}^{\infty}\frac{1}{2n-1}$. Ряд расходится (для этого сравним его с гармоническим рядом $\sum_{n=1}^{\infty}\frac{1}{n}$). Применим предельный признак сравнения. Здесь $a_n=\frac{1}{2n-1}$, $b_n=\frac{1}{n}$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n}{2n - 1} = \lim_{n \to \infty} \frac{1}{2 - \frac{1}{n}} = \frac{1}{2} \neq 0.$$

Следовательно, оба ряда ведут себя одинаково, а т. к. гармонический ряд расходится, то расходится и исследуемый ряд.

Окончательно: область сходимости исходного ряда — промежуток $\left(-\frac{1}{\sqrt[5]{2}},\frac{1}{\sqrt[5]{2}}\right)$.

Пример 7. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \left(\frac{n+1}{2n+1}\right)^{\frac{n}{2}} (x-2)^{2n}$.

Решение. Здесь $a_n = \left(\frac{n+1}{2n+1}\right)^n$. Для отыскания радиуса сходимости воспользуемся формулой (4.3)

$$R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{\left(\frac{n+1}{2n+1}\right)^{\frac{n}{2}}}} = \lim_{n \to \infty} \sqrt{\frac{2n+1}{n+1}} = \lim_{n \to \infty} \sqrt{\frac{2+\frac{1}{n}}{1+\frac{1}{n}}} = \sqrt{2}.$$

Следовательно, $-\sqrt{2} < (x-2)^2 < \sqrt{2}$, т.е.

$$\begin{cases} (x-2)^2 > -\sqrt{2} \\ (x-2)^2 < \sqrt{2} \end{cases} \qquad \begin{cases} x \in R \\ -\sqrt[4]{2} < |x-2| < \sqrt[4]{2} \end{cases}.$$

В результате получим $-\sqrt[4]{2} < x - 2 < \sqrt[4]{2}$.

Исследуем сходимость на концах отрезка. Пусть $x-2=\sqrt[4]{2}$. Имеем

$$\sum_{n=1}^{\infty} \left(\frac{n+1}{2n+1} \right)^{\frac{n}{2}} 2^{\frac{n}{2}} = \sum_{n=1}^{\infty} \left(\frac{2n+2}{2n+1} \right)^{\frac{n}{2}} = \sum_{n=1}^{\infty} \left(1 + \frac{1}{2n+1} \right)^{\frac{n}{2}}.$$

$$\lim_{n \to \infty} \left(1 + \frac{1}{2n+1} \right)^{\frac{n}{2}} = \lim_{n \to \infty} \left(1 + \frac{1}{2n+1} \right)^{\frac{(2n+1)n}{(2n+1)2}} =$$
Ho
$$= \lim_{n \to \infty} e^{\frac{n}{2n+1} \cdot \frac{1}{2}} = e^{\lim_{n \to \infty} \frac{n}{2n+1} \cdot \frac{1}{2}} = e^{\lim_{n \to \infty} \frac{1}{4 + \frac{2}{n}}} = e^{\frac{1}{4}} = \sqrt[4]{e} \neq 0$$

и ряд расходится.

Аналогично, это же справедливо и при $x-2=-\sqrt[4]{2}$. Итак область сходимости ряда $2-\sqrt[4]{2} < x < 2+\sqrt[4]{2}$.

Пример 8. Найти сумму ряда $\frac{x^3}{3} + \frac{x^4}{4} + \frac{x^5}{5} + \frac{x^6}{6} + \cdots$ (|x| < 1).

Решение. Обозначим искомую сумму ряда через, S(x) т. е.

$$S(x) = \frac{x^3}{3} + \frac{x^4}{4} + \frac{x^5}{5} + \frac{x^6}{6} + \dots$$
 (4.4)

Продифференцируем почленно равенство (4.4):

$$S'(x) = x^2 + x^3 + x^4 + x^5 + \dots = \frac{x^2}{1 - x}, \quad |x| < 1$$

(применена формула суммы членов убывающей геометрической прогрессии). Отсюда, учитывая, что S(0) = 0, находим:

$$S(x) = \int_{0}^{x} S'(t) dt = \int_{0}^{x} \frac{t^{2}}{1 - t} dt = \int_{0}^{x} \left(-t - 1 - \frac{1}{t - 1} \right) dt = -\frac{x^{2}}{2} - x - \ln(1 - x), \ |x| < 1.$$

Пример 9. Найти сумму ряда

$$2x^2 - 3x^3 + 4x^4 - 5x^5 + \cdots$$
, $|x| < 1$.

Решение. Обозначим эту сумму через S(x), т. е.

$$S(x) = 2x^2 - 3x^3 + 4x^4 - 5x^5 + \cdots$$

Данное равенство перепишем так: $S(x) = x \cdot Q'(x)$, где

$$Q'(x) = 2x - 3x^2 + 4x^3 - 5x^4 + \cdots$$

Почленное интегрирование последнего равенства приводит к сумме членов убывающей геометрической прогрессии:

$$\int_{0}^{x} Q(t)dt = \int_{0}^{x} 2tdt - \int_{0}^{x} 3t^{2}dt + \int_{0}^{x} 4t^{3}dt - \int_{0}^{x} 5t^{4}dt + \dots = x^{2} - x^{3} + x^{4} - x^{5} = \frac{x^{2}}{1+x},$$

где $b_1 = x^2$; q = -x. Отсюда найдем Q'(x):

$$Q'(x) = \left(\frac{x^2}{1+x}\right)' = 1 - \frac{1}{(x+1)^2},$$

поэтому
$$S(x) = x \cdot Q'(x) = x - \frac{x}{(1+x)^2}$$
.

Аудиторные задания

- **1.** Найти сумму ряда $\sum_{n=1}^{\infty} \frac{1}{n} x^n |x| < 1$. (Отв. $S(x) = \frac{1}{x+1}$).
- 2. Исследовать на сходимость степенные ряды.

2.1.
$$\sum_{n=1}^{\infty} \frac{1}{(2n+1)!} (x+1)^n$$
 (OTB. $-\infty < x < \infty$).

2.2.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} (x+4)^n$$
 (OTB. 3 < x < 5).

2.3.
$$\sum_{n=1}^{\infty} \frac{1}{2^n} (x-1)^n$$
 (OTB. $1 < x < 3$).

2.4.
$$\sum_{n=1}^{\infty} (nx)^n$$
 (OTB. $x = 0$).

2.5.
$$\sum_{n=1}^{\infty} \frac{5^n}{n!} x^n$$
 (Отв. Расходится).

2.6.
$$\sum_{n=1}^{\infty} \frac{1}{n} x^{2n}$$
 (OTB. $-1 < x < 1$).

2.7.
$$\sum_{n=1}^{\infty} \frac{1}{(4n-3)8^n} x^{2n}$$
 (OTB. $-2 < x < 2$).

2.8.
$$\sum_{n=1}^{\infty} \frac{1}{2^n + 3^n} x^n$$
 (OTB. $-3 < x < 3$).

2.9.
$$\sum_{n=1}^{\infty} \frac{n}{n+1} \left(\frac{x+1}{2} \right)^n$$
 (OTB. $-1 < x < 3$).

2.10.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} x^n$$
 (Otb. $-1 \le x \le 1$).

3. Найти сумму рядов

3.1.
$$\sum_{n=1}^{\infty} \frac{n}{a^n} x^{n-1}$$
, если $|x| < a$ (Отв. $\frac{a}{(a-x)^2}$).

3.2.
$$\sum_{n=1}^{\infty} \frac{x^{n+1}}{(n+1)a^n}$$
, если $-a \le x < a$ (Отв. $\frac{a \ln a}{(a-x)} - x$).

Домашние задания

1. Найти область сходимости степенного ряда:

1.1.
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2} \cdot x^n$$
 OTB. $\left(-\frac{1}{e}; \frac{1}{e}\right)$.

1.2.
$$\sum_{n=1}^{\infty} \frac{(-2)^n (x+2)^n}{\sqrt{n}}$$
 OTB. $(-2,5;-1,5]$.

1.3.
$$\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n+2^n}}$$
 OTB. $(-2; 2)$.

1.4.
$$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot x^n}{(n+1)\sqrt{\ln(n+1)}}$$
 Otb. (-1;1].

1.5.
$$\sum_{n=1}^{\infty} n5^n \cdot (x-3)^n$$
 OTB. (2,8; 3,2).

1.6.
$$\sum_{n=1}^{\infty} \frac{3n^2}{n!} (x+2)^n$$
 OTB. $x = -2$.

1.7.
$$\sum_{n=1}^{\infty} \frac{(x+1)^n}{n(2^n+1)}$$
 OTB. $[-3;1)$.

1.8.
$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{n\sqrt{n+1}}$$

1.9.
$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{2^n + 2^{2n}}$$

1.10.
$$\sum_{n=1}^{\infty} \frac{(x+2)^n}{3^n + 4^n}$$

1.11.
$$\sum_{n=1}^{\infty} \frac{(x-3)^n}{2n+5}$$

1.12.
$$\sum_{n=1}^{\infty} \frac{(x+1)^n}{2^n + 5^{2n}}$$

1.13.
$$\sum_{n=1}^{\infty} \frac{n}{n+1} \cdot \left(\frac{x-1}{2}\right)^n$$

1.14.
$$\sum_{n=1}^{\infty} \frac{2^n (x-2)^n}{n(n+1)}$$

Otb.
$$(-1,5; 2,5)$$
.

1.15.
$$\sum_{n=1}^{\infty} \frac{10^n (x-1)^n}{\sqrt{n}}$$

1.16.
$$\sum_{n=1}^{\infty} \frac{(x+1)^n}{\sqrt[3]{n} \cdot 3^n}$$

Otb.
$$[-4; 2)$$
.

1.17.
$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{\ln(n+1)}$$

1.18.
$$\sum_{n=1}^{\infty} \frac{(x-5)^n}{5^n \cdot n^2}$$

1.19.
$$\sum_{n=1}^{\infty} \frac{n!(x-3)^n}{2n}$$

Отв.
$$x = 3$$
.

1.20.
$$\sum_{n=1}^{\infty} \frac{100^n (x+2)^n}{n!}$$

OTB.
$$(-\infty; +\infty)$$
.

1.21.
$$\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^{n^2} (x-1)^n$$
 OTB. $(-\infty; +\infty)$.

1.22.
$$\sum_{n=1}^{\infty} \left(\frac{1}{5}\right)^{n^2} (x+2)^n \qquad \text{Otb. } (-\infty; +\infty).$$

1.23.
$$\sum_{n=1}^{\infty} 3n^2 \cdot 2^{-n} (x-1)^n$$
 OTB. $x = 1$.

1.24.
$$\sum_{n=1}^{\infty} \frac{(x+3)^n}{n^2+4}$$
 OTB. [-4;-2].

1.25.
$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{(2n-1)\cdot 2^n}$$
 Otb. [0; 4).

1.26.
$$\sum_{n=1}^{\infty} \frac{(x+1)^n}{(x+1)\ln^2(n+1)}$$
 Otb. [-2;0].

1.27.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} (x-2)^n}{(x+1) \ln(n+1)}$$
 OTB. (1; 3].

1.28.
$$\sum_{n=1}^{\infty} n \cdot 3^n \cdot x^n$$
 OTB. $\left(-\frac{1}{3}; \frac{1}{3}\right)$.

2. Почленно дифференцируя или интегрируя данный степенной ряд, найти его сумму.

<u>Указание.</u> В некоторых примерах сумму ряда следует домножить или разделить на x, x^2 и т. д.

2.1.
$$\frac{1 \cdot 2}{100} + \frac{2 \cdot 3}{1000} + \frac{3 \cdot 4}{10000} + \frac{4 \cdot 5}{100000} + \cdots$$
, $|x| < 10$ Otb. $\frac{20}{(10 - x)^3}$.

2.2.
$$2x - 4x^3 + 6x^5 - 8x^7 + \cdots$$
, $|x| < 1$ OTB. $\frac{2x}{(1 - x^2)^2}$.

2.3.
$$x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \cdots$$
, $|x| < 1$ OTB. $-\ln(1-x)$.

2.4.
$$\frac{x^3}{3} + \frac{x^7}{7} + \frac{x^{11}}{11} + \frac{x^{15}}{15} + \cdots$$
, $|x| < 1$ OTB. $\frac{1}{4} \ln \frac{(1+x)}{(1-x)} - \frac{1}{2} \arctan x$.

2.5.
$$\frac{x^2}{1.2} - \frac{x^3}{2.3} + \frac{x^4}{3.4} - \frac{x^5}{4.5} + \cdots$$
, $|x| < 1$ OTB. $(x+1)\ln(x+1) - x$.

2.6.
$$1 \cdot 2x + 2 \cdot 3x + 3 \cdot 4x^2 + 4 \cdot 5x^3 + \cdots$$
, $|x| < 1$ Otb. $\frac{2}{(1-x)^3}$.

2.7.
$$\frac{1}{5} + \frac{2x}{5^2} + \frac{3x^2}{5^3} + \frac{4x^3}{5^4} + \cdots, \quad |x| < 5$$
 OTB. $\frac{5}{(5-x)^2}$.

2.8.
$$3x^2 + 4x^3 + 5x^4 + 6x^5 + \cdots$$
, $|x| < 1$ OTB. $\frac{1}{(1-x)^2} - 1 - 2x$.

2.9.
$$x + \frac{x^2}{2 \cdot 2} + \frac{x^3}{3 \cdot 2^2} + \frac{x^4}{4 \cdot 2^3} + \dots, \quad |x| < 2$$
 OTB. $2 \ln \frac{2}{2 - x}$.

2.10.
$$\frac{3x^2}{2^3} - \frac{4x^3}{2^4} + \frac{5x^4}{2^5} - \frac{6x^5}{2^6} + \dots, \quad |x| < 2$$
 Otb. $\frac{x}{2} + \frac{2}{(2+x)^2} - \frac{1}{2}$.

2.11.
$$\frac{x^2}{2} - \frac{x^3}{2} + \frac{x^4}{4} - \frac{x^5}{5} + ..., |x| < 1$$
 OTB. $x - \ln(1 - x)$.

2.12.
$$1 \cdot 2x - 2 \cdot 3x + 3 \cdot 4x^2 - 4 \cdot 5x^3 + \dots$$
, $|x| < 1$ Otb. $\frac{2}{(1+x)^3}$.

2.13.
$$x - \frac{x^2}{2 \cdot 3} + \frac{x^3}{3 \cdot 3^2} - \frac{x^4}{4 \cdot 3^3} + \dots, |x| < 3$$
 OTB. $3 \ln \frac{3+x}{3}$.

2.14.
$$\frac{2 \cdot 3x}{2^3} - \frac{3 \cdot 4x^2}{2^4} + \frac{4 \cdot 5x^3}{2^5} - \frac{5 \cdot 6x^4}{2^6} + \dots$$
, $|x| < 2$ OTB. $\frac{1}{2} - \frac{4}{(2+x)^3}$.

2.15.
$$4x^3 + 6x^5 + 8x^7 + 10x^9 + ..., |x| < 1$$
 OTB. $\frac{2x}{(x^2 - 1)^2} - 2x$.

2.16.
$$\frac{x^2}{2} - \frac{x^3}{3} + \frac{x^4}{4} - \frac{x^5}{5} + ..., |x| < 1$$
 OTB. $x - \ln(1+x)$.

2.17.
$$x - \frac{x^3}{2} + \frac{x^5}{5} - \frac{x^7}{7} + ..., |x| < 1$$

Отв.
$$arctg x$$
.

2.18.
$$1-3x^3+5x^4-7x^6+...$$
, $|x|<1$ OTB. $\frac{1-x^2}{(1+x^2)^2}$.

OTB.
$$\frac{1-x^2}{(1+x^2)^2}$$

2.19.
$$1 \cdot 2 + 2 \cdot 3x + 3 \cdot 4x^2 + 4 \cdot 5x^3 + \dots$$
, $|x| < 1$ Otb. $\frac{2}{(1-x)^3}$.

2.20.
$$x + \frac{x^5}{5} + \frac{x^9}{9} + \frac{x^{13}}{13} + ..., |x| < 1$$
 Otb. $\frac{1}{2} \arctan x - \frac{1}{4} \ln \frac{1-x}{1+x}$.

2.21.
$$x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + ..., |x| < 1$$
 Otb. $\frac{1}{2} \ln \frac{1+x}{1-x}$.

2.22.
$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + ..., |x| < 1$$
 OTB. $\ln(1+x)$.

2.23.
$$1+2^2x+3^2x^2+4^2x^3+...$$
, $|x|<1$ OTB. $\frac{1+x}{(1-x)^3}$.

2.24.
$$\frac{1}{10} + \frac{2x}{100} + \frac{3x^2}{1000} + \frac{4x^3}{10000} + \dots$$
, $|x| < 10$ Otb. $\frac{10}{(10-x)^2}$.

2.25.
$$\frac{x}{1\cdot 2} + \frac{x^3}{3\cdot 2^3} + \frac{x^5}{5\cdot 2^5} + \frac{x^7}{7\cdot 2^7} + \dots, |x| < 2$$
 Otb. $\frac{1}{2} \ln \frac{2+x}{2-x}$.

2.26.
$$\frac{x^3}{3} - \frac{x^5}{5} - \frac{x^7}{7} - \frac{x^9}{9} + ..., |x| < 1$$
 OTB. $x - \arctan x$.

2.27.
$$x-2x^2+3x^3-4x^4+...$$
, $|x|<1$ OTB. $\frac{-x}{(1+x)^2}$.

2.28.
$$2 \cdot 3x^3 + 3 \cdot 4x^2 + 4 \cdot 5x^3 + 5 \cdot 6x^4 + \dots$$
, $|x| < 1$ Otb. $\frac{2}{(1+x)^3} - 2$.

ЗАНЯТИЕ 5

Ряды Фурье

Рядом Фурье функции f(x), определенной и интегрируемой на отрезке $[-\pi,\pi]$ называется тригонометрический ряд

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx), \qquad (5.1)$$

коэффициенты которого определяются формулами:

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx, \quad n = 0, 1, 2, \dots$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx, \quad n = 1, 2, 3, \dots$$
(5.2)

Ряд Фурье произвольной интегрируемой функции не обязан сходится, а если он все же и сходится в некоторой точке, то его сумма не обязана совпадать со значением функции в этой точке. Условия, при которых ряд Фурье сходится, сформулированы в следующей теореме.

Теорема (Дирихле). Если функция f(x) с периодом 2π является кусочно-гладкой на отрезке $[-\pi,\pi]$, т. е. f(x) и f'(x) непрерывна на отрезке $[-\pi,\pi]$ или имеют на нем конечное число точек разрыва I рода, то ряд Фурье сходится в каждой точке отрезка $[-\pi,\pi]$ и его сумма равна

$$\begin{cases} f(x), & \text{если } x-\text{точка непрерывности } f(x) \\ \frac{1}{2}(f(x_0-0)+f(x_0+0)), & \text{если } x=x_0-\text{точка разрыва } f(x) \\ \frac{1}{2}(f(-\pi+0)+f(\pi+0)), & \text{при } x=\pi, \ x=-\pi. \end{cases}$$
 (5.3)

Если функция f(x) является четной, то ее ряд Фурье имеет вид

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx, \qquad (5.4)$$

(все коэффициенты $b_n = 0$, n = 1, 2, 3, ...) и его коэффициенты можно подсчитывать по формулам

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \, dx, \quad n = 0, 1, 2, \dots$$
 (5.4')

Ряд Фурье нечетной функции содержит только члены с синусами все коэффициенты $a_n=0, \quad n=0,1,2,\dots$):

$$f(x) = \sum_{n=1}^{\infty} b_n \sin nx, \qquad (5.5)$$

и его коэффициенты можно подсчитывать по формулам

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx, \quad n = 1, 2, 3, \dots$$
 (5.5')

Функция, заданная на промежутке $(0, \pi]$, может быть продолжена на промежуток $[-\pi, 0]$ либо четным, либо нечетным образом. Если функция кусочно-дифференцируема на промежутке [-l, l], то справедливо разложение:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right), \tag{5.6}$$

$$a_{n} = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx, \quad n = 0, 1, 2, \dots$$

$$b_{n} = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx, \quad n = 1, 2, 3, \dots$$
(5.7)

Замечание. При разложении функции f(x) в ряд Фурье в произвольном промежутке [a, a+2l] длины 2l нижний и верхний пределы интегрирования в формулах (5.7) следует заменить на a и a+2l соответственно.

Примеры

1. Разложить в ряд Фурье 2π – периодическую функцию $f(x) = x^2$ на отрезке $[-\pi, \pi]$.

Решение. Так как функция $f(x)=x^2$ является четной, то $b_n=0$, $\forall n=1,2,3...$ Вычисляем коэффициенты a_n по формулам (4)':

$$a_0 = \frac{2}{\pi} \int_0^{\pi} x^2 dx = \frac{2\pi^2}{3},$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} x^2 \cos nx \, dx = \frac{2}{\pi} \left(\frac{x^2 \sin nx}{n} \int_0^{\pi} - \frac{2}{\pi} \int_0^{\pi} x \sin nx \, dx \right) =$$

$$= -\frac{4}{n\pi} \left(-\frac{x \cos nx}{n} \Big|_0^{\pi} + \frac{1}{n} \int_0^{\pi} \cos nx \, dx \right) =$$

$$= -\frac{4}{n\pi} \left(-\frac{\pi \cos n\pi}{n} + \frac{1}{n^2} \sin nx \Big|_0^{\pi} \right) = \frac{4}{n^2} \cos n\pi = \frac{4(-1)^n}{n^2}.$$

По теореме Дирихле ряд Фурье функции $f(x) = x^2$ на отрезке $[-\pi, \pi]$ сходится к x^2 :

$$x^{2} = \frac{\pi^{2}}{3} + 4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos nx, \quad \forall x \in [-\pi, \pi]$$

В точках $x = \pm \pi$ сумма ряда равна:

$$S(\pm \pi) = \frac{1}{2} (f(-\pi) + f(\pi)) = \frac{1}{2} (\pi^2 + \pi^2) = \pi = f(\pm \pi).$$

2. Разложить в ряд Фурье функцию $f(x) = \frac{\pi - x}{2}$ на интервале $(0, 2\pi)$.

Решение. Функция $f(x) = \frac{\pi - x}{2}$ непрерывна на интервале $(0, 2\pi)$ длины 2π . Вычислим коэффициенты ее ряда Фурье:

$$a_0 = \frac{1}{\pi} \int_0^{2\pi} \frac{\pi - x}{2} dx = \frac{1}{2\pi} \left(\pi x - \frac{x^2}{2} \right) \Big|_0^{2\pi} = 0$$

$$a_n = \frac{1}{\pi} \int_0^{2\pi} \frac{\pi - x}{2} \cos nx \, dx = \frac{1}{2\pi} (\pi - x) \frac{\sin nx}{n} \Big|_0^{2\pi} + \frac{1}{2\pi n} \int_0^{2\pi} \sin nx \, dx =$$

$$= \frac{1}{2\pi} \left((\pi - 2\pi) \frac{\sin 2\pi n}{n} - (\pi - 0) \frac{\sin 0}{n} \right) - \frac{1}{2\pi n} \frac{\cos nx}{n} \Big|_0^{2\pi} =$$

$$= -\frac{1}{2\pi n^2} (\cos 2\pi n - \cos 0) = 0, \quad n = 1, 2, 3...$$

$$b_n = \frac{1}{\pi} \int_0^{2\pi} \frac{\pi - x}{2} \sin nx \, dx = -\frac{1}{2\pi} (\pi - x) \frac{\cos nx}{n} \Big|_0^{2\pi} - \frac{1}{2\pi n} \int_0^{2\pi} \cos nx \, dx =$$

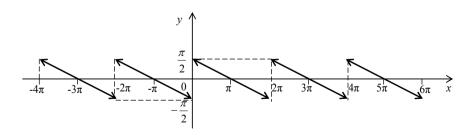
$$= -\frac{1}{2\pi n} \left((\pi - 2\pi) \cos 2\pi n - (\pi - 0) \cos 0 \right) - \frac{1}{2\pi n^2} \sin nx \Big|_0^{2\pi} =$$

$$= -\frac{1}{2\pi n} (-\pi - \pi) - \frac{1}{2\pi n^2} (\sin 2\pi n - \sin 0) = \frac{1}{n}, \quad n = 1, 2, 3...$$

Следовательно, на интервале $(0, 2\pi)$ ряд Фурье сходится к самой функции, т. е.

$$\frac{\pi - x}{2} = \sum_{n=1}^{\infty} \frac{\sin nx}{n}, \quad \forall \ x \in (0, 2\pi).$$

При x=0 $f(0)=\frac{\pi}{2}$, следовательно, S(0)=0, где $S(x)=\sum_{n=1}^{\infty}\frac{\sin nx}{n}$, поэтому $f(0)\neq S(0)$. Аналогично можно показать, что $f(2\pi)\neq S(2\pi)$. График суммы ряда S(x) имеет вид:



Аудиторное задание

1. Разложить в ряд Фурье функцию f(x) на интервале $(-\pi, \pi)$

1.1.
$$f(x) = \begin{cases} -x, & -\pi < x \le 0 \\ 2x, & 0 < x < \pi \end{cases}$$

$$OTB.: -\frac{3}{4}\pi + \frac{6}{\pi} \sum_{n=1}^{\infty} \frac{\cos(2g+1)x}{2n+1} + \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sin nx}{n}.$$
1.2.
$$f(x) = \sin \frac{x}{2}$$

$$OTB.: \frac{8}{\pi} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{n \sin nx}{4n^2 - 1}.$$
1.3.
$$f(x) = |x|$$

$$OTB.: \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=0}^{\infty} \frac{\cos(2n+1)x}{(2n+1)^2}.$$
1.4.
$$f(x) = \pi + x$$

$$OTB.: \pi + 2 \sum_{n=1}^{\infty} (-1)^{n+1} \sin nx.$$

2. Разложить в ряд Фурье функцию f(x) на интервале $(0, \pi)$

2.1.
$$f(x) = \begin{cases} 1, & 0 < x \le 1 \\ 0, & 1 < x < \pi \end{cases}$$

Отв.: $\frac{2}{\pi} \left(\frac{1}{2} + \sum_{n=1}^{\infty} \frac{\sin n}{n} \cos nx \right)$ по косинусам.

2.2.
$$f(x) = \cos \frac{x}{\pi}$$

Отв.: $2\pi \sum_{n=1}^{\infty} \frac{n}{1 - (n\pi)^2} ((-1)^n \cos 1 - 1) \sin nx$ по синусам.

2.3.
$$f(x) = \begin{cases} 1 - 2x, & 0 < x \le \frac{1}{2} \\ 0, & \frac{1}{2} < x < \pi \end{cases}$$

Отв.:
$$\frac{1}{2\pi} \left(\frac{1}{2} + 16 \sum_{n=1}^{\infty} \left(\frac{\sin \frac{n}{4}}{n} \right)^2 \cos nx \right)$$
 по косинусам.

3. Разложить в ряд Фурье функцию f(x) на интервале (-e,e)

3.1.
$$f(x) = \begin{cases} 1, & -1 < x \le 0 \\ x, & 0 < x < 1 \end{cases}$$
OTB.:
$$\frac{3}{4} - \frac{2}{\pi^2} \sum_{n=1}^{\infty} \frac{\cos(2n+1)x}{(2n+1)^2} - \frac{1}{n} \sum_{n=1}^{\infty} n \frac{\sin \pi x}{n}.$$

3.2.
$$f(x) = e^x$$
, $l = \frac{1}{2}$

Otb.:
$$2Sh\frac{1}{2}\left(1+4\sum_{n=1}^{\infty}(-1)^{n}\frac{\frac{1}{2}\cos 2\pi nx - \pi n\sin^{2}\pi nx}{1+(2\pi n)^{2}}\right).$$

3.3.
$$f(x) = \begin{cases} -1, & -1 < x < 1 \\ 1, & 0 < x < 1 \end{cases}$$
OTB.:
$$\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n+1} \sin(2n+1)\pi x.$$

4. Разложить в ряд Фурье функцию f(x), заданную на интервале (0,e)

4.1.
$$f(x)=1-x$$
, $l=1$

Отв.:
$$\frac{1}{2} + \frac{1}{\pi^2} \sum_{n=0}^{\infty} \frac{\cos(2n+1)\pi x}{(2n+1)^2}$$
 по косинусам.

4.2.
$$f(x) = x - x^2$$
, $l = 1$

Отв.:
$$\frac{5}{6} + \frac{2}{\pi^2} \sum_{n=1}^{\infty} \frac{3(-1)^n - 1}{n^2} \cos n\pi x$$
 по косинусам.

4.3.
$$f(x) = 1 + x$$
, $l = 1$

Отв.:
$$\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1 - 2(-1)^n}{n} \sin n\pi x$$
 по синусам.

4.4.
$$f(x) = x^2$$
, $l = 1$

Отв.:
$$\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{2}{(\pi n)^2} (-1)^n - 1 - (-1)^n \right) \sin n\pi x$$
 по синусам.

Домашнее задание

1. Разложить в ряд Фурье функцию f(x) на интервале $(-\pi, \pi)$:

$$1.1. \ f(x) = \begin{cases} 5x, -\pi < x \le 0 \\ -x, & 0 < x < \pi \end{cases}$$

$$OTB : \frac{3}{2}\pi - \frac{12}{\pi} \sum_{n=1}^{\infty} \frac{\cos(2n+1)x}{2n+1} + 4 \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sin n \ x}{n}.$$

$$1.2. \ f(x) = \begin{cases} -3, -\pi < x \le 0 \end{cases} \qquad OTD : 1 + 8 \sum_{n=1}^{\infty} \frac{\sin(2n+1)x}{n}.$$

1.2.
$$f(x) =\begin{cases} -3, -\pi < x \le 0 \\ 1, 0 < x < \pi \end{cases}$$
 OTB.: $-1 + \frac{8}{\pi} \sum_{n=0}^{\infty} \frac{\sin(2n+1)x}{2n+1}$.

1.3.
$$f(x) = e^{-x/2}$$

OTB.:
$$\frac{2}{\pi} Sh\left(\frac{\pi}{2}\right) \left(1 + \sum_{n=1}^{\infty} \frac{(-1)^n}{4n^2 + 1} \left(2\cos nx + 4n\sin nx\right)\right).$$

2. Разложить в ряд Фурье функцию f(x) на интервале $(0,\pi)$:

2.1.
$$f(x) = \begin{cases} 1 - x, & 0 < x < 1 \\ 0, & 1 \le x < \pi \end{cases}$$
 Отв.:
$$\frac{1}{\pi} \left(\frac{1}{2} + 4 \sum_{n=1}^{\infty} \left(\frac{\sin n/2}{n} \right)^2 \cos nx \right)$$
 по косинусам.

2.2.
$$f(x) = \cos \pi x$$

Отв.:
$$\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{n}{\pi^2 - n^2} (-1)^n \cos \pi^2 - 1 \sin nx$$
 м по синусам.

2.3.
$$f(x) = \begin{cases} 1, & 0 < x < \pi/2 \\ 0, & \pi/2 < x < \pi \end{cases}$$

Отв.:
$$\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1 - \cos \frac{n\sqrt{2}}{2}}{n} \sin nx$$
 по синусам.

3. Разложить в ряд Фурье функцию f(x) на интервале (-l,l):

3.1.
$$f(x) = \begin{cases} 0, -3 < x < 0 \\ x, 0 < x < 3, l = 3 \end{cases}$$

OTB.:
$$\frac{3}{4} - \frac{6}{\pi} - \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} \cos \frac{(2n+1)\pi x}{3} + \frac{3}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin \frac{n\pi x}{3}$$
.

3.2.
$$f(x) = e^{-x}$$
, $l = 1$

OTB.:
$$2sh1\left(\frac{1}{2} + \sum_{n=1}^{\infty} (-1)^n \frac{\cos n \pi x + n \pi \sin n \pi x}{1 + (\pi n)^2}\right)$$
.

3.3.
$$f(x) = |x|, l = 2$$
 OTB.: $1 - \frac{8}{\pi^2} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} \cos \frac{(2n+1)\pi x}{2}$.

4. Разложить в ряд Фурье функцию f(x), на интервале (0,l):

4.1.
$$f(x) = 2 + 3x$$
, $l = 3$

Отв.:
$$\frac{13}{2} - \frac{36}{\pi^2} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} \cos \frac{(2n+1)\pi x}{3}$$
 по косинусам.

4.2.
$$f(x) = x, l = 3$$

Отв.:
$$\frac{6}{\pi} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} \sin \frac{n \pi x}{3}$$
 по синусам.

4.3.
$$f(x) = x - \frac{x^2}{2}$$
, $l = 2$

Отв.:
$$\frac{16}{\pi^3} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^3} \sin \frac{(2n+1)\pi x}{2}$$
 по синусам.

ЗАНЯТИЕ 6

Ряды Тейлора и Лорана. Классификация особых точек

Степенным рядом с комплексными членами называется ряд вида

$$C_0 + C_1(z-a) + ... + C_n(z-a)^n + ... = \sum_{n=0}^{\infty} C_n(z-a)^n,$$
 (6.1)

где z — комплексная переменная;

 C_n , a – комплексные числа;

 C_n – коэффициенты ряда, $a \neq \infty$ – центр ряда.

Напомним, что множество точек z, в которых ряд сходится, образуют **область сходимости** данного ряда.

Областью сходимости степенного ряда по отрицательным степеням (z-a)

$$\frac{b_1}{z-a} + \frac{b_2}{(z-a)^2} + \dots + \frac{b_n}{(z-a)^n} + \dots = \sum_{n=1}^{\infty} \frac{b_n}{(z-a)^n}$$
 (6.2)

является внешность круга радиусом r с центром в точке a: |z-a|>r .

Радиус r для ряда (6.2) может быть определен по коэффициентам b_n с помощью формул:

$$r = \lim_{n \to \infty} \left| \frac{b_{n+1}}{b_n} \right|; \quad r = \lim_{n \to \infty} \sqrt[n]{|b_n|}.$$

Если ряд (6.1) сходится в круге |z-a| < R, а ряд (6.2) сходится в области |z-a| > r, то при $0 < r < R < \infty$ областью сходимости ряда

$$\sum_{n=1}^{\infty} \frac{b_n}{(z-a)^n} + \sum_{n=0}^{\infty} C_n (z-a)^n$$

является кольцо r < |z-a| < R . При r > R этот ряд всюду расходится.

Функция f(z) называется аналитической в точке a, если ее **ряд Тейлора**

$$f(z) = f(a) + \frac{f'(a)}{1!} (z - a) + \dots + \frac{f^{(n)}(a)}{n!} (z - a)^n + \dots =$$
$$= \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z - a)^n$$

имеет положительный радиус сходимости.

Всякая функция f(z), аналитическая внутри кольца с центром в точке a, разлагается внутри этого кольца в **ряд Лорана**

$$f(z) = \dots + \frac{C_{-n}}{(z-a)^n} + \dots + \frac{C_{-1}}{z-a} + C_0 + C_1(z-a) + \dots$$

$$\dots + C_n(z-a)^n + \dots = \sum_{n=-\infty}^{+\infty} C_n(z-a)^n,$$
(6.3)

где
$$C_n = \frac{1}{2\pi i} \oint_c \frac{f(z)dz}{(z-a)^{n+1}} (n = 0, \pm 1, \pm 2, ...),$$

C – любой замкнутый контур, расположенный внутри кольца и окружающий точку a.

Части
$$\sum_{n=1}^{\infty} \frac{C_{-n}}{(z-a)^n}$$
 и $\sum_{n=0}^{\infty} C_n (z-a)^n$ ряда (6.3) называются со-

ответственно **главной** и **правильной**. Главная часть ряда Лорана сходится в области |z-a|>r, а правильная — в области |z-a|< R.

Замечание 1. Если некоторую функцию f(z), аналитическую в кольце z < |z-a| < R, надо разложить ряд Лорана, ее следует представить как сумму функций $f_l(z)$ и $f_2(z)$, аналитических соответственно в |z-a| < R. и в |z-a| > r, и разложить первую из них по положительным степеням (z-a), а вторую — по отрицательным степеням (z-a).

Точка z = a, в которой функция f(z) не является аналитической, а в некоторой ее проколотой окрестности аналитична, называется **изолированной** особой точкой функции f(z).

Такая точка называется устранимой, если существует $\lim_{z\to a} f(z) \neq \infty$; полюсом, если существует $\lim_{z\to a} f(z) = \infty$ и су-

щественно особой, если $\lim_{z\to a} f(z)$ не существует.

Характер изолированной особой точки $z = a \neq \infty$ функции f(z) может быть установлен по виду ряда Лорана этой функции для кольца r < |z - a| < R.

Точка z = a будет соответственно устранимой, полюсом и существенно особой, если в этом ряде главная часть соответственно отсутствует, содержит конечное число членов или бесконечное их число соответственно.

При этом, если главная часть ряда Лорана имеет вид $\sum_{n=m}^{\infty} \frac{C_{-n}}{(z-a)^n} (C_{-m} \neq 0),$ число m называется **порядком** полюса

z = a (если m = 1, то полюс называется **простым**). В этом случае функция f(z) может быть представлена в виде

$$f(z) = \frac{\varphi(z)}{(z-a)^m},$$

где $\varphi(z)$ — функция, аналитическая в точке z = a и $\varphi(z) \neq 0$. Точка z = a называется **нулем** или корнем кратности m функ-

ции $\varphi(z)$, если $\varphi(a) = \varphi'(a) = ... = \varphi^{(m)}(a) \neq 0$. Это число z = a является **полюсом** кратности m.

Примеры

1. Найти область сходимости степенного ряда

$$\sum_{n=1}^{\infty} \frac{5^n (1-i)^n}{\sqrt{(3n-2)\cdot 2^n}} \cdot (z-1)^n.$$

Решение. Коэффициент общего члена данного ряда $C_n = \frac{5^n (1-i)^n}{\sqrt{(3n-2) \cdot 2^n}} \cdot \text{Тогда } C_{n+1} = \frac{5^{n+1} (1-i)^{n+1}}{\sqrt{(3n+1) \cdot 2^{n+1}}} \cdot$

Найдем радиус сходимости

$$R = \lim_{n \to \infty} \left| \frac{C_n}{C_{n+1}} \right| = \lim_{n \to \infty} \left| \frac{5^n (1-i)^n \sqrt{(3n+1) \cdot 2^{n+1}}}{\sqrt{(3n-2) \cdot 2^n \cdot 5^{n+1} (1-i)^{n+1}}} \right| =$$

$$= \lim_{n \to \infty} \left| \frac{2^{1/2} \sqrt{3n+1}}{2^{1/2} \cdot 5\sqrt{3n-2}} \right| = \frac{1}{5}.$$

Область сходимости данного ряда будет $|z-1| < \frac{1}{5}$, которая представляет собой внутренность круга радиусом $\frac{1}{5}$ с центром в точке z=1.

2. Разложить в ряд Тейлора функцию $f(z) = z^5 - 3z^3 + 2z - 1$ по степеням (z-2).

Решение. В данном случае

$$f(z) = f(2) + \frac{f'(2)}{1!} (z - 2) + \frac{f''(2)}{2!} (z - 2)^2 + \dots + \frac{f^{(\vee)}(2)}{5!} (z - 2)^5,$$

$$f(z) = z^{5} - 3z^{3} + 2z - 1\Big|_{z=2} = 11, \ f'(z) = 5z^{4} - 9z^{2} + 2\Big|_{z=2} = 46,$$

$$f''(z) = 20z^{3} - 18z\Big|_{z=2} = 124, f'''(z) = 60z^{2} - 18\Big|_{z=2} = 222,$$

$$f^{(/\vee)}(z) = 120z\Big|_{z=2} = 240, f^{(\vee)}(z) = 120.$$

Таким образом, для данной функции имеем:

$$f(z) = 11 + 46(z-2) + 62(z-2)^2 + \frac{111}{3}(z-2)^3 + 10(z-2)^4 + (z-2)^5.$$

3. Разложить в ряд Лорана функцию $f(z) = \frac{z-4}{z^2-8z+65}$ в окрестности точки $z=\infty$.

Решение. Разложим исходную функцию на простейшие дроби:

$$f(z) = \frac{z-4}{z^2 - 8z + 65} = \frac{z-4}{(z - (4-7i))(z - (4+7i))} = \frac{1}{2} \cdot \frac{1}{z - (4-7i)} + \frac{1}{2} \cdot \frac{1}{z - (4+7i)}.$$

Эта функция теряет аналитичность в точках $z_1 = 4 - 7i$ и $z_2 = 4 + 7i$.

Следовательно, окрестностью бесконечно удаленной точки, в которой функция f(z) является аналитической, будет внешность круга, радиуса $R=\sqrt{65}\left(|4\pm7i|=\sqrt{65}\right)$ с центром в начале координат, т.е. область $|z|>\sqrt{65}$.

Разложение в ряд Лорана по степеням z в кольце $\sqrt{65} < |z| < \infty$ будет иметь вид:

$$f(z) = \frac{1}{2} \cdot \frac{1}{z} \cdot \frac{1}{1 - \frac{4 - 7i}{z}} + \frac{1}{2} \cdot \frac{1}{z} \cdot \frac{1}{1 - \frac{4 + 7i}{z}} = \frac{1}{2} \cdot \frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{4 - 7i}{z}\right)^n + \frac{1}{2} \cdot \frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{4 + 7i}{z}\right)^n = \frac{1}{2} \sum_{n=0}^{\infty} \frac{(4 - 7i)^n + (4 + 7i)^n}{z^{n+1}}.$$

Этот ряд сходится в области $\sqrt{65} < |z| < \infty$, на границе которой находятся три особые точки $(z_1 = 4 - 7i, z_2 = 4 + 7i, z = \infty)$.

4. Найти нули и указать их кратность

$$f(z) = (z+1)^2(z^2-z-2)^3$$
.

Решение. Так как $z^2-z-2=(z+1)(z-2)$, то $(z+1)^2(z^2-z-2)=$ $=(z+1)^2(z+1)^3(z-2)^3=(z+1)^5(z-2)^3=0$, при $z_1=-1$ и $z_2=2$. Таким образом точка $z_1=-1$ является нулем пятой кратности, а точка $z_2=2$ — нулем третьей кратности.

5. Определить изолированные особые точки. Указать их тип.

$$f(z) = \frac{3z+2}{(z-1)^3(3z^2+2z-1)^2}.$$

Решение. Числитель и знаменатель данной функции являются аналитическими функциями на всей плоскости, причем знаменатель

$$(z-1)^3(3z^2+2z-1)^2 = 9(z-1)^3(z+1)^2\left(z-\frac{1}{3}\right)^2 = 0$$

при
$$z_1 = 1$$
, $z_2 = -1$, $z_3 = \frac{1}{3}$.

Числитель в этих точках отличен от нуля. Следовательно, указанные точки – изолированные особые.

Точка z=1 является нулем третьей кратности. Следовательно, она является полюсом третьего порядка. Аналогично, z=-1 и $z=\frac{1}{3}$ — полюсы второго порядка для данной функции.

Аудиторные задания

1. Найти область сходимости ряда

1.1.
$$\sum_{n=1}^{\infty} \left(\frac{(1+2i)^n}{(4-3i)^n} (z-3+i)^n + \frac{n(1+i)^n}{(z-3+i)^n} \right)$$
(OTB.: $\sqrt{2} < |z-3+i| < \sqrt{5}$).

1.2.
$$\sum_{n=1}^{\infty} \frac{(z-2i)^n}{(4-3i)^n} + \sum_{n=1}^{\infty} \frac{2n-1}{(2-2i)^n}$$
(OTB.: $1 < |z-2i| < 5$).

1.2.
$$\sum_{n=0}^{\infty} \frac{(z-2i)^n}{5^n} + \sum_{n=1}^{\infty} \frac{2n-1}{(z-2i)^n}$$
 (OTB.: $1 < |z-2i| < 5$).

1.3.
$$\sum_{n=1}^{\infty} \left(\left(\frac{z-1}{4} \right)^n + \left(\frac{3}{z-1} \right)^n \right)$$
 (Otb.: 3 < $|z-1|$ < 4).

2. Разложить в ряд Тейлора по степеням функцию

1.4.
$$f(z) = e^{2z-1}$$
, no $(z-2)$

(Otb.:
$$f|z| = e^3 \sum_{n=0}^{\infty} \frac{2^n}{n!} (z-2)^n, (|z-2| < \infty)$$
).

1.5.
$$f(z) = \frac{1}{4z1} \text{ no } z$$
 (Otb.: $-\sum_{n=0}^{\infty} 4^n z^n$, $|z| < \frac{1}{4}$).

1.6.
$$f(z) = \frac{z}{4+3z^2}$$
 no z

(Otb.:
$$\sum_{n=0}^{\infty} \frac{(-1)^n 3^n}{4^{n+1}} \cdot z^{2n+1}, \quad |z| < \frac{2\sqrt{3}}{3}$$
).

3. Разложить в ряд Лорана функцию

3.1.
$$f(z) = \frac{2z}{(z^2+1)}$$
 по степеням $z - (1+i)$

$$(Oтв.: при $D_1 : |z - (i+1) < 1|$

$$f(z) = \sum_{n=0}^{\infty} (-1)^n \left(\frac{1}{(1+2i)^{n+1}} + 1\right) (z - (1+i))^n;$$

$$при $D_2 : 1 < |z - (1+i) < \sqrt{5}|$

$$f(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(1+2i)^{n+1}} (z - (1+i))^n + \sum_{n=0}^{\infty} \frac{(-1)^n}{(z - (1+i))^{n+1}};$$

$$при $D_3 : \sqrt{5} < |z - (1+i) < \infty|$

$$f(z) = \frac{(-1)^n (1 + (1+2i)^n)}{(z - (1+i))^{n+1}}).$$
3.2. $f(z) = \frac{1}{z(1-z)}$ (Отв.: $f(z) = \sum_{n=-1}^{\infty} \frac{1}{z^n}$, при $0 < |z| < 1$;
$$f(z) = -\sum_{n=2}^{\infty} \frac{1}{z^n}$$
, при $|z| > 1$.
3.3. $f(z) = \frac{1}{z^2-1}$, при $|z| > 1$.$$$$$$

4. Найти нули и указать их кратность

4.1.
$$f(z) = (z^3 + i)^2$$
 (Отв.: $-\frac{\sqrt{3}}{2} - \frac{1}{2}i; \frac{\sqrt{3}}{2} - \frac{1}{2}i,$ – второй кратности).
4.2. $f(z) = (2z - 1)^2 (z^2 - 4i)^2$ (Отв.: $z = 0.5; z = -\sqrt{2}(1+i), z = \sqrt{2}(1+i)$ – нули второй кратности).

4.3.
$$f(z) = \cos z - \frac{1}{2}$$
 (Отв.: $z = \pm \frac{\pi}{3} + 2\pi n, n = 0; \pm 1, \pm 2, \dots$ – простые нули).

5. Определить изолированные особые точки. Определить их тип.

$$5.1.$$
 $f(z) = \frac{2\sin z - 3\sin^2 z}{z(z^2 + 4)^2}$,
 (Отв.: $z = 0$ – устранимая особая точка).
 $5.2.$ $f(z) = \frac{4z^2 - 1}{\left(2z^2 - 3z - 2\right)^3}$
 (Отв.: $z = -0.5$ – полюс второго порядка; $z = 2$ – полюс третьего порядка).

Домашние задания

1. Разложить в ряд Тейлора функцию f(z):

1.1.
$$f(z) = (1+z) \cdot e^{z^2}$$
, no z (Otb.: $\sum_{n=0}^{\infty} \frac{z^{2n} + z^{2n+1}}{n!}, |z| < \infty$).

1.2.
$$f(z) = z^4 - 10z^2 + 2z - 1$$
, no $(z+1)$

(OTB.:
$$-12+18(z+1)-4(z+1)^2-4(z+1)^3+(z+1)^4,$$

 $|z|<\infty$).

1.3.
$$f(z) = e^z$$
, no $(z+1)$ (OTB.: $e^{-1} \sum_{n=0}^{\infty} \frac{1}{n!} (z+1)^n, |z+1| < \infty$).

2. Разложить в ряд Лорана в заданном кольце

2.1.
$$f(z) = \frac{1}{z^2 - 5z + 6}$$
, $2 < |z| < 3$ (OTB.: $-\sum_{n=0}^{\infty} \frac{2^n}{z^{n+1}} - \sum_{n=0}^{\infty} \frac{z^n}{3^{n+1}}$).

2.2.
$$f(z) = \frac{1}{z^2 + 2z - 8}$$
, $2 < |z| < 4$
(OTB.: $\frac{1}{6} \left(\sum_{n=0}^{\infty} \frac{2^n}{z^{n+1}} + \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{4^{n+1}} z^n \right)$).

3. Разложить в ряд Лорана в окрестности бесконечно удаленной точки

3.1.
$$f(z) = \frac{4z-3}{3z^2-5z+2}$$
 (Отв.: $\sum_{n=0}^{\infty} \frac{3^{n+1}+2^n}{3^{n+1}\cdot z^{n+1}}$, при $|z| > 1$).
3.2. $f(z) = \frac{z+6}{z^3+2z^2+2z}$ (Отв.: $\sum_{n=0}^{\infty} \frac{(-1)^n((1+5i)(1+i)^n+1)}{(1-5i)(1-i)^n}$ при $|z| > \sqrt{2}$).

4. Найти нули и указать их кратность

$$f(z)=z^3(1-\cos 3z)$$
 (Отв.: $z=0$ — нуль пятой кратности; $z=\frac{2\pi n}{3}, n=\pm 1,\pm 2,\ldots$ — нули второй кратности).

5. Определить изолированные особые точки. Определить их тип.

5.1.
$$f(z) = \frac{\sin 5z}{z - \pi}$$
 (Отв.: $z = \pi$ – устранимая особая точка).

5.2.
$$f(z) = \frac{1}{z} e^{\frac{z+1}{z}}$$
 (Отв.: $z = 0$ – существенно особая точка).

Учебное издание

ВОРОНОВИЧ Галина Константиновна КАТКОВСКАЯ Ирина Николаевна ЛЕБЕДЕВА Галина Ивановна САГАРДА Елена Васильевна

РЯДЫ

Методическое пособие по высшей математике

Технический редактор Д.А. Исаев Компьютерная верстка Н.А. Школьниковой

Подписано в печать 25.04.2011. Формат $60\times84^1/_{16}$. Бумага офсетная. Отпечатано на ризографе. Гарнитура Таймс. Усл. печ. л. 3,66. Уч.-изд. л. 2,86. Тираж 500. Заказ 604.

Издатель и полиграфическое исполнение: Белорусский национальный технический университет. ЛИ № 02330/0494349 от 16.03.2009. Проспект Независимости, 65. 220013, Минск.