УДК.621.321

ОПРЕДЕЛЕНИЕ НАДЕЖНОСТИ СХЕМ РАСПРЕДЕЛИТЕЛЬНЫХ УСТРОЙСТВ СТАНЦИЙ НАПРЯЖЕНИЕМ 220 КВ

Андросов В.М., Шурыгин Б.В.

Научный руководитель – к.т.н., доцент Старжинский А.Л.

Для обеспечения надёжности электроснабжения при проектировании и эксплуатации электростанций необходимо производить расчёт надёжности. Для расчёта надёжности в этой работе используется программа «TOPAS».

Для расчета и сравнения надежности схем электростанций выбраны два варианта распределительных устройств: РУ с тремя выключателями на два присоединения (рис. 1) и РУ с двумя выключателями на одно присоединение (рис. 2).

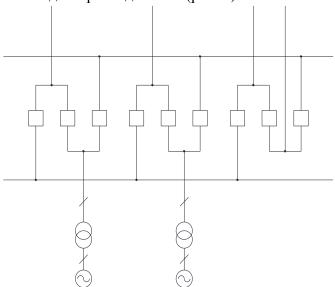


Рисунок 1 – Схема РУ с тремя выключателями на два присоединения

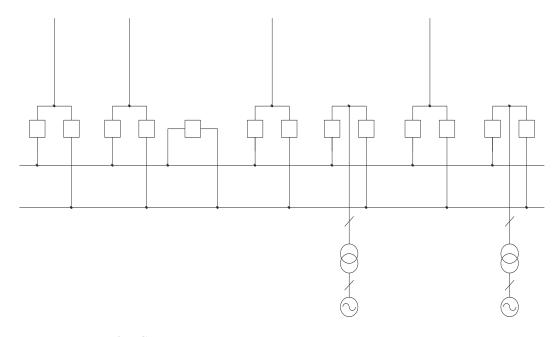


Рисунок 2 – Схема РУ с двумя выключателями на одно присоединение

Для всех элементов схемы были заданы следующие показатели надежности: частота отказа (λ , 1/год), время послеаварийного восстановления (T_B , ч), частота планового ремонта

 $(\lambda_{\text{рем}}, 1/\text{год})$ и длительность планового ремонта $(T_{\text{рем}}, \mathbf{q})$. Показатели надежности для всех элементов представлены в таблице 1.

таолица т ттоказатели падежности элемент							
Элементы схемы	Частота отказа, 1/год	Время послеава рийного восстанов ления, ч	Частота планового ремонта, 1/год	Длительность планового ремонта, ч	Вероятность отказа в срабатывании P3, o.e.		
Генераторы	0,6	46	0,236	227	0,001		
ЛЭП	0,5	16,2	2,8	15,8	0,001		
Трансформаторы	0,085	104	1	30	0,001		
Шины	0,016	5	0,166	4	0,001		
Выключатели	0,026	32	0,2	105,4	-		

Таблица 1 – Показатели надежности элементов

Вычисление логических показателей надёжности главной схемы осуществляется на основе определения количества комбинаций событий (конъюнкций) C(k), приводящих к отказу её функционирования k-го вида:

$$C(k) = \sum_{i} \sum_{j} \sum_{s} L(k), \tag{1}$$

где L(k) - логическая функция, принимающая значение 0 или 1.

Вычисление частот отказов функционирования k-го вида $\lambda(k)$ и длительностей аварийного восстановления T(k) в общем случае осуществляется по выражениям:

$$\lambda(k) = \sum_{j} \sum_{i} q(j)\lambda(i)Q(s/j)L(k); \tag{2}$$

$$T(k) = \frac{1}{\lambda(k)} \sum_{j} \sum_{i} q(j) \lambda(i) \min \left\{ \frac{t(j)}{2}; t(i); t_{0,\Pi} \right\} Q(s/i) L(k), \tag{3}$$

где q(j) - относительная длительность j-го ремонтного режима (o.e.); $\lambda(i)$ - частота повреждения i-го элемента схемы (1/год); t(i) - длительность послеаварийного восстановления i-го элемента схемы (ч); t(j) - длительность j-го ремонтного режима работы схемы; $t_{O.\Pi.}$ - время оперативных переключений (ч); Q(s/i) - вероятность отказа в срабатывании s-го устройства P3 или KA.

По результатам расчета программы «TOPAS» получены следующие показатели надежности схем: частота аварийных отключений (λ_{Σ} , 1/год) и среднее время восстановления ($T_{\text{в}\Sigma}$, ч). Полученные показатели надежности схем представлены в таблице 2. Также вычислен коэффициент неготовности ($K_{\text{н}}$, o.e.), представленый в таблице 3.

	1	таолица 2 – показатели надежности схем			
	Частота аварийных	отключений, 1/год	Среднее время восстановления, ч		
Код аварии	2 выключателя на присоединение	3 выключателя на 2 присоединения	2 выключателя на присоединение	3 выключателя на 2 присоединения	
1Γ	1,5	1,45	49,05	50,76	
2Г 4Л	0,0294	0,000751	0,5	3,54	
1Г 1Л	0,00208	0,0606	0,5	0,62	
1Л	2,2	2,1	15,2	15,92	
1Г 2Л	0,00156	0,0303	0,5	0,65	

Таблица 2 – Показатели надежности схем

	т аоли	ца 5 — Коэффицистты неготовности схег			
	Коэффициент неготовности				
Код аварии	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 выключателя на 2			
	2 выключателя на присоединение	присоединения			
1Γ	0,008398973	0,008402055			
2Г 4Л	1,67808E-06	3,03486E-07			
1Г 1Л	1,18721E-07	4,28904E-06			
1Л	0,003817352	0,003816438			
1Г 2Л	8,90411E-08	2,24829E-06			

Таблица 3 – Коэффициенты неготовности схем

По результатам, представленным в таблицах 2 и 3 видно, что коэффициенты неготовности при потере одного трансформатора или одной линии различаются не значительно. При потере одного трансформатора и одной линии или одного трансформатора и двух линий коэффициент неготовности у схемы РУ с тремя выключателями на два присоединения примерно в 30 раз больше, чем у схемы РУ с двумя выключателями на одно присоединение. Однако про потере двух трансформаторов и четырех линий коэффициент неготовности у схемы РУ с двумя выключателями на одно присоединение в 5,5 раз больше, чем у схемы РУ с тремя выключателями на два присоединения.

Исходя из всего вышеперечисленного можно сделать вывод о том, что схема РУ с двумя выключателями на одно присоединение является более надежной.

Литература

- 1. Рожкова Л.Д., Козулин В.С. Электрооборудование станций и подстанций. 3-е изд. М., Энергоатомиздат, 1987 г.
- 2. Электротехнический справочник: В 4 т. Т.3. Производство, передача и распределение электрической энергии / Под общ. ред. профессоров МЭИ В.Г. Герасимова и др. (гл. редактор А.И. Попов). 9-е изд. М.: Издательство МЭИ, 2004. 964 с.