УДК 621.31

РАСЧЁТ РЕЖИМА ЗАМКНУТОЙ ЭЛЕКТРИЧЕСКОЙ СЕТИ С ИСПОЛЬЗОВАНИЕМ УЗЛОВЫХ УРАВНЕНИЙ УСТАНОВИВШИХСЯ РЕЖИМОВ С МАТРИЦЕЙ ZУ ПРИ ЗАДАНИИ ЧАСТИ УЗЛОВ АКТИВНОЙ МОЩНОСТЬЮ И МОДУЛЕМ НАПРЯЖЕНИЯ

Зайцев П.А.

Научный руководитель – старший преподаватель Мышковец Е.В.

Метод Зейделя был первым методом, примененным для расчета установившихся режимов ЭЭС на ЭВМ. Простота алгоритмической реализации, малый объем вычислений на каждом шаге, незначительная потребность оперативной памяти и приемлемая для широкого круга задач сходимость метода позволили даже на первых моделях ЭВМ рассчитывать режимы сетей, содержащих сотни узлов.

Уравнение напряжения, используемое в итерационном процессе:

$$U_{i}^{*} = \frac{1}{Y_{ii}} \left(\frac{S_{i}^{*}}{U_{i}^{(k)}} + Y_{i\delta}U_{\delta} + \sum_{j=1}^{i-1} Y_{ij}U_{j}^{*} + \sum_{j=i+1}^{n} Y_{ij}U_{j}^{*} \right), \tag{1}$$

 $1 \le i \le n$

Процесс расчёта считается законченным если:

$$\Delta U^{(k+1)} = \left| U_i^{(k+1)} - U_i^{(k)} \right| \le \varepsilon, \tag{2}$$

 ε – требуемая точность;

Учёт опорных узлов типа *P*, *U*-const.

В части генераторных узлов ЭЭС необходимо учесть заданные активную мощность Р и модуль напряжения, которые регулируются и могут быть фиксированными (опорные узлы типа P, U). Такие узлы, представляющие большинство генераторов электростанций с первичным регулированием частоты, являются базисными по напряжению и балансирующими по реактивной мощности Q, пределы изменения которой (располагаемая реактивная мощность):

$$Q_i^{\min} \le Q_i \le Q_i^{\max} \qquad , \tag{3}$$

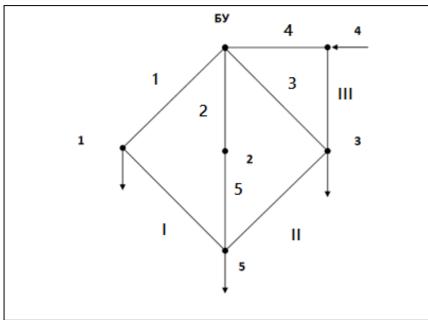


Таблица 1. Параметры линий сети

+									
	№ ветви или хорды	1	2	3	4	5	I	п	Ш
	Марка провода	AC 95/16	AC 240/32	AC 240/32	AC 185/29	AC 120/19	AC 120/19	AC 185/29	AC 150/24
	r _{0,} Ом/км	0,306	0,121	0,121	0,162	0,249	0,249	0,162	0,198
	х _{0,} Ом/км	0,434	0,405	0,405	0,413	0,427	0,427	0.413	0.420
	Длина линии, км	32	26	26	36	51	53	39	40

$$P := \begin{pmatrix} 10 \\ 0 \\ 23 \\ -20 \\ 25 \end{pmatrix} \qquad Q := \begin{pmatrix} 5 \\ 0 \\ 7 \\ -10 \\ 19 \end{pmatrix} \qquad U := \begin{pmatrix} 110 \\ 110 \\ 110 \\ 117 \\ 110 \end{pmatrix}$$

Рисунок 2. Нагрузки и напряжения в узлах

Проведём расчёт итерационным методом и покажем первую итерацию:

$$\begin{split} &U_{1} = \frac{1}{Y_{y1,1}} \cdot (-\frac{S_{1,1}}{U_{1,n}} - Y_{\Sigma 6,1} \cdot U_{\delta y} - \sum_{k=2}^{5} (Y_{y1,k} \cdot U_{k,n})) = 114.554 - 0.342j \; ; \\ &U_{2} = \frac{1}{Y_{y2,2}} \cdot (-\frac{S_{2,1}}{U_{2,n}} - Y_{\Sigma 6,2} \cdot U_{\delta y} - \sum_{k=1}^{1} (Y_{y2,k} \cdot U_{k,n+1}) - \sum_{k=3}^{5} (Y_{y2,k} \cdot U_{k,n})) = 116.289 - 0.453j \; ; \\ &U_{3} = \frac{1}{Y_{y3,3}} \cdot (-\frac{S_{3,1}}{U_{3,n}} - Y_{\Sigma 6,3} \cdot U_{\delta y} - \sum_{k=1}^{2} (Y_{y3,k} \cdot U_{k,n+1}) - \sum_{k=4}^{5} (Y_{y3,k} \cdot U_{k,n})) = 115.244 - 0.958j \; ; \end{split}$$

$$U_4 = const$$
;

$$U_{5} = \frac{1}{Y_{v5.5}} \cdot \left(-\frac{S_{5.1}}{U_{5.n}} - Y_{\Sigma 6.5} \cdot U_{\delta y} - \sum_{k=1}^{4} (Y_{y1,k} \cdot U_{k,n+1})\right) = 113.442 - 1.564 j$$

После расчёты мы получим такие результаты:

$$\begin{split} & \left| U_{1,9} - U_{1,10} \right| = 8.234 \cdot 10^{-4} \\ & \left| U_{2,9} - U_{2,10} \right| = 6.245 \cdot 10^{-4} \\ & \left| U_{3,9} - U_{3,10} \right| = 5.94 \cdot 10^{-4} \\ & \left| U_{4,9} - U_{4,10} \right| = 0 \\ & \left| U_{4,9} - U_{5,10} \right| = 6.975 \cdot 10^{-4} \end{split}$$

$$U_{1} = 116.664 \kappa B$$

$$U_{2} = 118 \kappa B$$

$$U_{3} = 116.833 \kappa B$$

$$U_{4} = 117 \kappa B$$

$$U_{5,9} - U_{5,10} = 6.975 \cdot 10^{-4}$$

Построим график сходимости итерационного процесса:

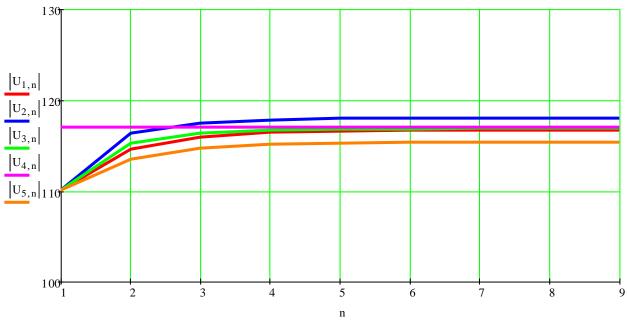


Рисунок 5. График сходимости итерационного процесса

Результаты расчётов полученный с помощью программы RastrWin:

	0	S	Тип	Номер	Н	U_ном	Район	Р_н	Q_H	Р_г	Q_r	V_3д	Q_min	Q_max	В_ш	V	Delta	Tep	U
1			База	11	БУ	119				59,4	43,8					119,00			119
2			Нагр	1	Α	110		30,0	5,0							115,53	-1,41		115.5-J2.9
3			Нагр	2	В	110										117,93	-0,46		117.9-J1
4			Нагр	3	Д	110		23,0	7,0							116,96	-0,64		117-J1.3
5			Ген	4	Е	110				20,0	-10,0	117,0	-10,0	10,0		117,00	0,48		117+J1
6			Нагр	5	Γ	110		25,0	19,0							115,05	-1,24		115-J2.5

Рисунок 6. Резульаты расчётов программой RastrWin

Литература

1. Герасименко, А.А. Передача и распределение электрической энергии /А.А. Герасименко, В.Т. Федин- 2-е изд. Ростов-на-Дону: Феникс, 2008.-716с.