УДК 669.715, 621.74

Анализ диффузионных процессов на границе раздела структурных составляющих алюмоматричных композиций системы Al/SiO₂-Al₂O₃

Рафальский И.В. Белорусский национальный технический университет

Рассматривая металлургические жидкофазные и жидко-твердофазные процессы получения АКС с использованием кремнезема, можно допустить, что граница раздела фаз (Al, SiO_2) является идеальной только в начальный момент времени контакта атомов алюминия с поверхностью оксидной фазы SiO_2 . Под воздействием высокой температуры, ввиду высокой диффузионной подвижности, атомы алюминия в расплаве мигрируют через границу раздела Al/SiO_2 в направлении оксидной фазы, и, вступая в химическое взаимодействие с молекулами SiO_2 , формируют новый молекулярный слой Al_2O_3 на поверхности оксидной фазы SiO_2 .

В соответствии с представлениями о диффузии движение атомов алюминия может осуществляться по вакансионному (путем обмена с подошедшей вакансией), межузельному (путем выталкивания собственных атомов неметаллической фазы в междоузлие) или смешанному вакансионно-межузельному механизму. Образование Al_2O_3 из кремнезема сопровождается кардинальными изменениями кристаллической решетки и повышением концентрации дефектов кристаллической структуры. Последнее, в свою очередь, приводит к существенному повышению диффузионной активности алюминия, способствуя перемещению атомов металла вглубь оксидной фазы.

Принимая, что в начальный момент взаимодействия расплава алюминия с оксидной фазой SiO_2 концентрация атомов алюминия в последней равна нулю и на межфазной границе составляет 100%, были рассчитаны концентрационные профили по сечению сферической оксидной фазы кремнезема при различных значениях коэффициента диффузии алюминия через мономолекулярный Al_2O_3 —слой в диапазоне от $5\cdot10^{-7}$ до $7,5\cdot10^{-6}$ см²/с (коэффициент диффузии алюминия в кремнеземе D_{SiO2} = 10^{-17} см²/с) с учетом различного времени выдержки композиции.

Анализ полученных результатов показал, что расчетные значения концентраций алюминия в центре дисперсных оксидных частиц АКС при значениях коэффициента диффузии алюминия в диапазоне 10^{-6} – $2,5\cdot10^{-6}$ см²/с через Al_2O_3 –слой, образующийся на границе раздела «алюминий–кремнезем», согласуются с полученными экспериментальными данными о процессах физико-химического взаимодействия компонентов АКС системы Al/SiO_2 - Al_2O_3 .