УДК 621.791.725+621.791.754:519.23

Исследование влияния технологических факторов при лазерной сварке и ее комбинации со сваркой ТИГ среднеуглеродистой легированной стали системы Fe-Cr-Mn-Si

¹Голубцова Е.С., ²Каледина Н.Б. ¹Белорусский национальный технический университет ²Белорусский государственный технологический университет

Для оптимизации погонного расхода электроэнергии $P/v_{cB}(y_1)$ и погонной энергии сварки $q/v_{cB}(y_2)$ при сварке стыковых соединений среднеуглеродистой стали толщиной 3; 6 и 10,4 мм системы Fe-Cr-Mn-Si способами лазерной сварки лазером Nd:YAG мощностью до 4;4 кВт и ее комбинации со сваркой ТИГ использован план эксперимента 2×3 , где 2 - два кодированных уровня сварки (x_1 = -1) и способа сварки (x_1 = +1), 3 - три кодированных уровня толщины свариваемой стали (x_2 = -1, -3 мм; x_2 = 0,-5 мм; x_2 = +1,-9 мм), а y_1 и y_2 - параметры оптимизации - погонный расхода электроэнергии и погонная энергии сварки соответственно. Ошибки экспериментов соответственно составляли: S_1 = 0,00367 (5% от среднего значения y_1); S_2 = 0,046 (5% от среднего значения y_2). После обработки результатов эксперимента получены следующие уравнения регрессии:

$$y_1 = \frac{p}{v_{CB}} = 0,058 - 0,05x_1 + 0,05x_2 - 0,064x_1x_2 + 0,024x_2^2;$$

$$y_2 = \frac{q}{v_{CB}} = 0,756 + 0,0466x_1 + 0,806x_2 + 0,339x_1x_2 + 0,249x_2^2.$$

Анализ выведенных уравнений показывает, что наибольшее влияние на оба оптимизируемых параметра y_1 и y_2 оказывает толщина свариваемого металла (x_2). Минимальное значение $y_1 = 0,015$ кВт·ч/м будет при $x_1 = +1$ (лазерная сварка+ТИГ) и $x_2 = 0$ (6 мм). Минимальная величина параметра y_2 будет при $x_1 = -1$ (лазерная сварка при 4,4 кВт) и $x_2 = -1$ (толщина 3 мм), $y_{max} = 2,615$ будет при $x_1 = +1$ и $x_2 = +1$, т.е. при толщине свариваемой пластины 9 мм (лазерная сварка+ТИГ).