УДК 621.9.04

Анализ схемы полигонального формирования профиля некруглых поверхностей в виде треугольника Рело методом следа

Данилов А.А. Белорусский национальный технический университет

Профиль некруглой поверхности формируется полигональным методом как след производящей точки, совершающей два согласованных вращательных движения вокруг параллельных осей. При формировании сто-

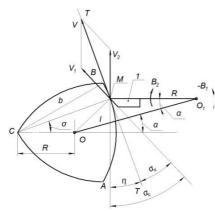


Схема полигонального профилирования дуги окружности

роны АВ (рисунок) треугольника Рело ABC, производящая точка Mдолжна перемещаться по окружности, радиус которой равен его ширине b. Точка M совершает вращение B_2 вокруг оси O_1 , которая получает вращение вокруг оси О заготовки. При равных угловых скоростях вращательных движений B_1 и B_2 уравнение траектории результирующего движения точки M в системе координат с началом точке O имеет вид: $(x = l \cdot cos\alpha - R)$ (1), откуда сле $y = l \cdot sin\alpha$ дует, что $y^2 + (x+R)^2 = l^2$ (2).

Отсюда радиус формируемой окружности равен l. Следовательно, по рассмотренной схеме можно профилировать некруглые детали с профилем в виде треугольника Рело. В этом случае инструмент должен иметь три производящих элемента, равномерно расположенных по окружности, радиус которой связан с шириной b треугольника Рело зависимостью $R = \frac{b}{\sqrt{3}}$.

Скорость V движения резания, равная геометрической сумме скоростей V_1 и V_2 направлена вдоль касательной TT, поэтому изменение η рабочих углов инструмента в каждой точке формируемой линии равно углу поворота α производящей точки вокруг противоположно расположенной вершины треугольника Рело: $\eta = \sigma$. Из-за недопустимого изменения рабочих углов инструмента по рассмотренной схеме профилирования невозможна обработка точением. Эта схема рекомендуется для обработки некруглых деталей с таким профилем поверхностно-пластическим деформированием.