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Abstract

This paper presents a mathematical model for predicting the thickness of coatings deposited by means of spraying onto
rotating parts with circular symmetry, for the case of time-dependent material feed rate. A procedure for calculating the
material feed rate control law providing production of coatings with uniform thickness or coatings with a predefined law of
thickness variation is developed. The proposed procedure was used to analyze the process of spraying onto the surface of a
rotating disc. A material feed rate variation law providing production of uniform coatings and coatings with linear thick-
ness variation is calculated. It is demonstrated that for the first case the optimal law of material feed rate variation is
described by a linear function and for the second case it can be successfully approximated by a quadratic function. The
proposed calculation technique can be easily used for the case of coatings with a more complex law of thickness variation.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Today spraying is widely used for depositing coatings onto various articles. Thermal spraying is based on
dispersion of liquid metal or ceramic material stream produced by melting continuously supplied wire or pow-
der with the help of an electric or plasma arc [1]. Dispersion is performed with the help of a high-speed gas
stream. Colliding with the substrate, droplets of the dispersed melt spread and solidify, forming so called
‘‘splats’’. So, in order to create an integrated model of the spraying process, the following phenomena are
to be considered:

(1) spray formation [2,3];
(2) dynamics and thermal state of droplets during flight [2–4];
(3) collision of droplets with the substrate and subsequent cooling and solidification [2,3,5];
(4) evolution of the article shape during spraying [6].
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Nomenclature

A deposition rate in the center of the spraying area, m/s
d size of the sprayed material particles, m
f(q, t) exponential part of the deposition rate function
Fj(q) function obtained as a result of numerical integration of function f(q, t) on the time interval

(sj1(q);sj2(q)), s
h coating thickness, m
M total number of crossings of the radial section under consideration with the spraying area
Mj1 and Mj2 numbers of the time intervals to which the time instants sj1 and sj2 belong
N1 number of time samples
N2 integer number defining frequency of spatial sampling
N3 number of spatial sampling intervals
r effective radius of the spraying area, m
R radius of the article, m
t time variable, s
tR total time of spraying, s
vh coating deposition rate, m/s
vs speed of gun motion, m/s
b porosity factor
c density of the sprayed material, kg/m3

c 0 apparent density of the coating, kg/m3

d distance from the center of the spraying area to the surface point under consideration, m
Dt increment of time sampling, s
Dq increment of spatial sampling, m
e small positive number
l mass feed rate of the sprayed material, kg/s
q distance from the article axis to the surface point under consideration, m
r root-mean-square deviation of the coating deposition rate function, m
sj1 and sj2 instants of time at which the point under consideration comes into the spraying area and

leaves it at the jth crossing of the section under consideration with this area, s
x angular speed of the article rotation, rad/s
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This paper is focused on the problem of optimization of the spraying process for obtaining the required
final profile of the surface.

The process of coating formation by means of spraying can be modeled in one of the following ways:

(1) Discrete modeling. In this case individual particles of a melt are traced. The method allows prediction of
microcharacteristics of coatings, particularly the surface roughness and microporosity. The main draw-
back of the method is its high computational cost. As a result the method can be applied only in the case
of thin coatings, when the total number of deposited droplets is relatively small.

(2) Continuous modeling. In this case a spraying device is represented as a continuous source of mass and
heat. The method allows only prediction of macrocharacteristics, particularly thickness.

An important characteristic of coatings produced by means of spraying is consistency of their thickness on
the surface of an article. In this case minimal mechanical post-processing is needed. Another important prob-
lem for practical applications is the problem of producing coatings with a predefined law of thickness varia-
tion. Particularly, this problem occurs when geometrically-complex fixture for casting or metal forming is
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manufactured by spraying layers of mechanically durable and thermally stable material onto templates made
of materials with lower mechanical properties [7]. The uniformity of coating thickness has been provided tra-
ditionally by trial and error method. However, this method is time-consuming and expensive and requires a
skilled operator. In this connection, numerical methods have been proposed in a number of papers [8–10],
which can be used to study possibility of deposition of coatings with uniform thickness by means of program-
mable control of the spraying process parameters. To define coating thickness, Goedjen et al. [8] use adaptive
integration of the function describing the coating deposition rate. Integration step is selected taking into
account the fast decrease of the deposition rate, taking place as the distance between the point under consid-
eration and the center of the spraying area increases. This distance is considered as the parameter determining
the step size. However, the modeling technique is not discussed in sufficient detail. Analysis is limited to the
case of flat surfaces, since the deposition rate is considered to be given for a certain fixed distance between the
spraying gun and the substrate, and no methods are proposed to account for change of this distance which will
evidently occur for more complex surfaces. Hansbo and Nylén [9] proposed a technique for modeling and
optimizing the coating thickness for rotationally symmetric surfaces. A model of the spraying cone is sug-
gested. The model makes it possible to calculate the dependence of the deposition rate on the distance between
the spraying gun and the substrate. Conner et al. [10] proposed a model of spray painting of geometrically-
complex surfaces. A novel projective method of calculation of the deposition rate for curved surfaces is
described. Modeling of the spraying cone is also discussed by Djurić and Grant [6,11]. To determine the
dependence of the deposition rate on the distance between the spraying gun and the substrate, they use the
law of conservation of matter and the assumption that the deposition rate distribution width at the half max-
imum is independent on this distance [6]. Calculation of the deposition rate treated as a function of the mate-
rial mass flow and the spray apex angle is also considered [11]. However, the proposed model is partially based
on heuristic relationships. In all described papers the trajectory of spraying gun motion is considered as the
main factor determining the uniformity of coating deposition. At the same time, control of this factor is asso-
ciated with dynamic errors resulting from the deviation of the actual law of gun motion from the calculated
one [8]. Furthermore, control of gun motion requires application of complex and expensive manipulators.
Today commercial software for generation of trajectories of manipulators during spraying is available. How-
ever, it was developed for the case of arbitrary trajectories and surfaces with no simplification of calculations
for more trivial cases. Moreover, this software involves a number of additional features (for example, realistic
models of robotic equipment) which complicate the modeling process. This paper discusses the possibility to
control the uniformity of coating deposition by changing the material feed rate. Data from the literature on
the use of such control method are not available, but there is information on application of control of powder
mixture components feed rate for producing coatings with continuous spatial variation of physicochemical
properties (functionally-graded coatings). This method is used, for example, in LENSTM (Laser Engineered
Net Shaping) technology [12]. The mathematical model used to describe the spraying process was initially
developed by the author for investigating the process of diamond-bearing slurry spraying onto the surface
of a scaife (an abrasive tool for grinding and polishing of diamonds) [13,14], but it can be applied for analyzing
other processes related to mass transfer and having similar kinematics, especially thermal spraying of coatings
and spray painting, as well as subtractive processes of surface shaping by concentrated energy flows (for exam-
ple, ion-beam machining). The drawback of the suggested models is the simplified assumption about uniform
distribution of abrasive particles across the section of a slurry jet. In this case, the density of distribution of
particles over the substrate surface is solely defined by the time of stay of individual surface elements in the
spraying area. To calculate this time, a kinematic approach can be used [13], thus reducing the problem to
solution of transcendental equations. However, such an approach is applicable only for surfaces with simple
shape. Besides, it requires a considerable computational resource, while the convergence of the numerical
method used for solving the equations is essentially dependent on initial approximations. In another model
[14], the total time of spraying is divided into a number of small intervals. The coating thickness in the surface
point under consideration is indirectly defined by the number of time intervals for which the point stays in the
spraying area. The position of the point relative to the spraying area is determined by checking simple geo-
metrical conditions. The drawback of this model is its limitation to the specific law of distribution of particles.
The mentioned drawback is eliminated in this paper.
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2. Description of the modeling technique

2.1. Deposition model for the case of stationary feed rate

Let us define the coating deposition rate vh as the thickness of the material deposited in the surface point
under consideration per a unit of time. As the coating thickness h is defined as the total thickness of the mate-
rial deposited in the point under consideration, the following relation is satisfied:
vh ¼
dh
dt
:

To calculate the coating thickness, we have to define the function describing the spatial distribution of the
coating deposition rate for a given spray section. Uniform distribution is not acceptable for describing the rate
of mass transfer across the spray section for thermal spraying and spray painting. As it is known [8–10], the
coating deposition rate can be most adequately described with the use of Gaussian function, but other func-
tions, for example, quadratic function [15], Cauchy distribution [16] and beta-distribution [17], can also be
used. The results obtained for different functions agree well. The difference is only in parameters of these func-
tions and in methods of their determination. For subtractive processes, the material removal rate can also be
described with the use of Gaussian function [18]. In the case when the spraying gun is stationary relative to the
article with a flat surface (stationary spraying) and spray axis is normal to the article surface, the coating depo-
sition rate will be described with the help of the Gaussian function:
vhðdÞ ¼ A expð�d2=r2Þ; ð1Þ
where A and r are the amplitude and the root-mean-square deviation and d is the distance from the center of
the spraying area to the surface point under consideration (center-to-point distance).

The amplitude A can de defined as the value of the deposition rate in the point of intersection of the spray
axis with the surface of the article (in the center of the spraying area). The root-mean-square deviation can be
defined as the center-to-point distance d for which the deposition rate decreases by e times as compared with
the amplitude. This deviation describes the diameter of the spraying area.

To determine the parameters of the coating deposition rate function, an experimental method [6,8] or sto-
chastic modeling [19] can be used. In the first case, spraying onto a flat stationary substrate is done with the
help of a spraying gun moving at a constant speed along a linear path which is parallel to the substrate surface.
Then the coating thickness in the section normal to the gun path is measured. When the deposition rate is
described with the help of Gaussian function, the coating profile in this section will be also described by
Gaussian function. Having defined its parameters on the basis of experimental data, we can calculate the
parameters of the deposition rate function. Another strategy is to use a so called ‘‘footprint experiment’’
[6]. In this case, stationary spraying described above is used.

In stochastic modeling, statistical distributions of size, speed, temperature and impact angle of droplets of
molten material are assumed to be known. During cooling edges of splats become distorted under the action of
thermal stresses. This distortion is assumed to be the main source of porosity. Splat parameters can be calcu-
lated using droplet parameters. Thus, if statistical distributions of droplets parameters are known, it is possible
to treat formation of the coating microstructure as a random process of splats accumulation and to calculate
the coating roughness, porosity and thickness, as well as the deposition rate function.

The dependence between the coating deposition rate function and the center-to-point distance is schemat-
ically shown in Fig. 1.

Let us consider the process of coating deposition onto the flat surface of a rotating article with circular sym-
metry. Every point of the surface will be described by two coordinates: radial coordinate q (distance from the
article axis to the surface point under consideration) and angular coordinate h counted off from the plane pass-
ing through the article axis and the spray axis. Let 2r be the effective diameter of the spraying area, that is
diameter of the circular area on the surface of the article, with the deposition rate outside this circular area
considered negligible, x be the angular speed of the article rotation, vs be the speed of gun motion, R be
the radius of the article. The introduced nomenclature and the diagram of the spraying process are shown
in Fig. 2.



Fig. 1. Dependence between the coating deposition rate function and the center-to-point distance.
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As it is shown in the picture, the gun is moving in the radial direction. The process modeling technique
depends on the relation between the value of gun displacement per one revolution of the article (2p/x Æ vs)
and the effective diameter of the spraying area (2r). During spraying, a spiral track of the sprayed material
appears on the surface of an article. Adjacent turns of the track may partially overlap or may have no com-
mon points, depending on the relation of the above mentioned parameters. When r < pvs/x, adjacent turns of
the track do not overlap and uncoated areas appear on the surface. In this case, distribution of the coating
thickness along the radial section of the article depends essentially on the angular coordinate and is strongly
non-uniform. Small fluctuations of thickness are observed even in the case of a rather uniform coating, what
may be attributed to the discrete nature of coating build-up in the radial section of the article. Goedjen et al.
[8] visually observed fluctuations of thickness in the form of a spiral pattern on the surface of an article. When
pvs/xr� 1, the dependence between the coating thickness and the angular coordinate can be neglected and
the coating thickness can be considered to be only the function of the radial coordinate. This allows to make
a conclusion about the coating uniformity for the article in whole if the coating thickness is known for a
Fig. 2. Diagram of the spraying process.
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number of points in an arbitrarily chosen radial section. In the case when the mentioned dependence cannot be
neglected, the coating thickness has to be calculated for a number of points evenly distributed over the whole
surface. It is not difficult algorithmically, but it takes a lot of computing time. Such an approach is used in
some models where the surface of an article is divided into a number of small elements [20,21].

In the case of a moving spraying gun, the function of the coating deposition rate is given by the
equation
vhðq; tÞ ¼ A expð�d2ðq; tÞ=r2Þ: ð2Þ
A similar relation is used by Goedjen et al. [8].
The center-to-point distance can be determined by the cosine rule (Fig. 3):
d2ðq; tÞ ¼ ðR� r � vstÞ2 þ q2 � 2qðR� r � vstÞ cos h:
The angular coordinate h is equal to xt accurate to an integer number of revolutions.
It is assumed here that at the initial instant of time the angular coordinate of the point under consideration

is equal to zero. The initial position of the spraying area is shown in Fig. 3 by dashes. It should be taken into
account that in fact a spraying gun moves along a linear path as depicted in Fig. 2. However, in order to make
Fig. 3 more understandable, a pair of motions (radial feed of the gun and rotation of the article) is substituted
with a single compound motion of the gun along a spiral path.

Eq. (2) follows directly from expression (1) if we take into account that the center-to-point distance d for a
moving gun will be dependent on the time t and the radial coordinate q. This dependence results from the
motion of the point under consideration relative to the spraying area during rotation of the article and radial
feed of the spraying gun.

As it follows from the relation between the coating thickness and the deposition rate, the dependence of the
coating thickness on the radial coordinate can be determined by means of integration:
hðqÞ ¼
Z tR

0

vhðq; tÞdt;
where tR is the total time of spraying.
For each jth revolution of the article there may exist a time interval for which the point under consideration

moves away from the centre of the spraying area to such an extent that the deposition rate in this point
Fig. 3. Geometrical construction used for calculation of the center-to-point distance.
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becomes negligible. Mathematically it can be expressed by the inequality d(q, t) > r. Contribution of these
intervals into the total value of the coating thickness can be neglected. This is equivalent to representing
the deposition rate function in the following truncated form:
~vhðq; tÞ ¼
vhðq; tÞ; dðq; tÞ 6 r;

0; dðq; tÞ > r:

�

The superscript will be omitted hereinafter and the deposition rate function will be used in the truncated
form if not specified otherwise.

Such truncation is reasonable from the practical point of view, because in practice the deposition rate is
non-zero only for a finite region.

The effective radius of the spraying area may be defined from the condition vh(r) = eA, where e is a small
positive number whose value describes the error appearing when truncation is used. In the numerical examples
given in the third section it was assumed that e = 5 · 10�3.

After truncation of the deposition rate function, the dependence h(q) can be presented in the following
form:
hðqÞ ¼
XM

j¼1

Z sj2ðqÞ

sj1ðqÞ
vhðq; tÞdt; ð3Þ
where M is the total number of crossings of the radial section under consideration with the spraying area and
sj1(q) and sj2(q) are the instants of time at which the point with the coordinate q comes into the spraying area
and leaves it at the jth crossing of the section under consideration with this area.

For a fixed point of the surface, the integral appearing in expression (3) possesses non-zero values only for
certain values of the index j because for some revolutions the point under consideration does not come into the
spraying area. It will be taken into account below when sampling by the variable q (see expression (6)). In
expression (3), in order to generalize it for applying to any values of the variable q, summation is performed
for all possible values of the index.

Summation in expression (3) reflects the discrete nature of the coating thickness build-up: for each revolu-
tion of the article the coating build-up in the point under consideration takes place only during the time inter-
val corresponding to its stay in the spraying area.
2.2. Deposition model for the case of time-dependent feed rate

Let us consider the possibility of producing coating with a uniform thickness by controlling the mass feed
rate l of the sprayed material. The feed rate l can be defined as the mass of the material produced by the
spraying gun per a unit of time. In the case of time-dependent material feed rate the amplitude of function
(1) will be dependent on the feed rate value and, therefore, on time:
A ¼ AðlðtÞÞ:
If it is assumed that the root-mean-square deviation of function (1) is independent of the feed rate value,
then for the stationary spraying we obtain the following relation between the material feed rate and the depo-
sition rate function:
l ¼ cð1� bðd; lÞÞ
Z þ1

0

vhðdÞ � 2pddd:
Here c is the density of the sprayed material, b is the porosity factor, 2pddd is the element of the spraying
area and the improper integral gives the value of the volume of the material sprayed onto the surface of an
article per a unit of time. The deposition rate function is used in the non-truncated form. The porosity factor
is defined by the expression b = 1 � c 0/c, where c 0 is the apparent density of the coating, and is a function of
the material particles size d and the feed rate l. The dependence b(d,l) can be determined from experimental
data or by means of stochastic modeling. Hereinafter it will be assumed that b = 0.
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The integration yields
l ¼ pcr2A;
hence it follows that
AðlÞ ¼ l
pcr2

: ð4Þ
Thus, for the above assumption, the amplitude of the deposition rate function is directly proportional to the
material feed rate.

If the feed rate of the sprayed material is considered to be sensibly constant for the time interval
sj2(q) � sj1(q), expression (3) can be written as follows:
hðqÞ ¼
XM

j¼1

Aj

Z sj2ðqÞ

sj1ðqÞ
expð�d2ðq; tÞ=r2Þdt;
where Aj = A(l(tj)) and tj = 2p(j � 1)/x is the time during which the article makes j � 1 complete revolutions.
As under the assumption accepted above the angular coordinate of the point under consideration is equal

to zero at the initial instant of time, the following inequality is satisfied: sj1(q) 6 tj 6 sj2(q).
Intending to calculate the integral by the rectangular quadrature formula, let us divide the total time of

spraying into N1 equal time intervals with the duration Dt = tR/N1 = (R � 2r)/vsN1. Then, denoting the inte-
grand as f(q, t), we obtain
hðqÞ ¼ Dt
XM

j¼1

Aj

XMj2ðqÞ�Mj1ðqÞ

i¼0

f ðq; ðMj1ðqÞ þ iÞDtÞ ¼ Dt
XM

j¼1

AjF jðqÞ; ð5Þ
where Mj1(q) = [sj1(q)/Dt] + 1, Mj2(q) = [sj2(q)/Dt] are the numbers of the time intervals to which the time in-
stants sj1(q) and sj2(q) belong.

The function Fj(q) describes the increment of the coating thickness during the jth revolution.
The coating thickness was determined for the range of discrete values of the radial coordinate, defined by

the equation
qk ¼ R� kDq; k ¼ 0; 1; . . . ;N 3;
where Dq = 2pvs/xN2 is the sampling increment, N3 = [R/Dq] is the number of sampling intervals and N2 is
the integer number defining the sampling frequency.

Having sampled expression (5) by the variable q, the following expression is obtained:
hk ¼ Dt
XjmaxðkÞ

j¼jminðkÞ
AjF jk; ð6Þ
where hk = h(qk), Fjk = Fj(qk) and jmin(k) and jmax(k) are the minimal and maximal values of the index j, for
which the condition Fjk 5 0 is satisfied (revolutions for which the point with the radial coordinate qk comes
into the spraying area).

According to expression (6), calculation of samples of the function h(q) comes to the weighted summation
of samples of the functions Fj(q). The weighting coefficients describe the time variation of the amplitude of the
coating deposition rate function, related to the variation of the material feed rate. This allows to make a con-
clusion that the problem of calculation of the material feed rate control law providing uniformity of thickness
of the sprayed coating can be reduced to the construction of weighting coefficients ensuring the constancy of
the sum (6) for different values of the index k. Let us demonstrate that the following weighting coefficients
meet this condition:
Aj ¼

maxkF 2;k

maxkF j;k
; 3 6 j 6 M � 1;

1; j ¼ 1 or j ¼ 2;
maxkF 2;k

maxkF M�1;k
; j ¼ M :

2
66664 ð7Þ
To prove this, numerical examples for the case of a circular disc will be considered in the next section.
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3. Numerical examples

The calculations were performed using a specially developed program in the built-in programming language
of the Mathcad� computer algebra system. The following parameters were used for the calculations:

• The disc radius R = 150 mm.
• The angular speed of the disc rotation x = 10 rad/s.
• The gun motion speed vs = 1.75 mm/s.
• The amplitude of the deposition rate function A = 0.017 mm/s.
• The root-mean-square deviation of the deposition rate function r = 4.127 mm.
• The density of the sprayed material c = 8.9 mg/mm3 (nickel).

The calculated value of the effective radius of the spraying area was found to be r = 9.5 mm.
Fig. 4 shows the dependence between the coating thickness and the radial coordinate for the case of var-

iation of the amplitude of the coating deposition rate function, defined by weighting coefficients (7).
For comparison, the dependence between the coating thickness and the radial coordinate for the case of

spraying with stationary parameters is shown in Fig. 5.
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Fig. 4. Dependence between the coating thickness and the radial coordinate for the case of spraying with time-dependent material feed
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Fig. 5. Dependence between the coating thickness and the radial coordinate for the case of spraying with stationary parameters.
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As follows from the analysis of the diagram shown in Fig. 4, the coating thickness is nearly constant for the
whole radius of the disc except for the areas in which the edge effect related to start and end of gun motion
appears. The width of the edge effect areas can be considered to be equal to the effective diameter of the spray-
ing area. In the case of spraying with stationary parameters (Fig. 5), the coating thickness increases towards
the center and then goes down to zero. The peripheral edge effect can be eliminated if at the beginning of gun
motion the boundary of the spraying area exceeds the bounds of the disc outer contour. The value of deviation
from the uniformity of spraying in the disc center can be reduced when the disc center is partially or fully
crossed by the spraying area. However, complete elimination of the spraying non-uniformity was not
achieved. The attempts to eliminate the spraying non-uniformity in the disc center were also made by Goedjen
et al. [8]. Variation of the gun motion speed and offset of its motion trajectory relative to the center were con-
sidered as possible means. The values of parameters, providing considerable reduction of deviation from the
uniformity, were found; however, fluctuations of the coating thickness in the disc center were also observed for
these values. It should be taken into consideration that many articles with circular symmetry have a central
opening. In this case the edge effect in the disc center can be eliminated with the spraying area exceeding
the bounds of the inner contour of the article.

Samples of the function describing the time variation of the material feed rate can be calculated from
known values of the weighting coefficients, using Eq. (4). The time variation of the material feed rate, plotted
on the basis of these samples, is shown in Fig. 6.

The analysis of the diagram shown above makes it possible to conclude that the material feed rate variation
law providing the distribution of the coating thickness along the radius as shown in Fig. 4 can be described by
a linear function. This result seems to be evident enough, but for the case of predetermined variation of the
coating thickness direct determination of the material feed rate control law is impossible and mathematical
modeling is needed. Modeling also allows to determine specific control parameters necessary for its practical
implementation.

To estimate the calculation accuracy, let us check the condition expressing the law of conservation of
matter:
2pc
Z R

0

hðqÞqdq ¼
Z tR

0

lðtÞdt:
Calculation of the integrals by the trapezium quadrature formula shows that their values are congruent to
0.368%.

As an example of application of the developed technique for the case of coating with a predefined law of
thickness variation, the material feed rate variation providing deposition of coating with linear thickness var-
iation is presented in Fig. 7.

The analysis shows that the diagram in the figure above can be successfully approximated by a quadratic
function. The distribution of the coating thickness, corresponding to the material feed rate variation law
approximated by a quadratic function, is shown in Fig. 8.
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Fig. 6. Time variation of the material feed rate.
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Fig. 7. Material feed rate variation providing deposition of coating with linear thickness variation.
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Fig. 8. Distribution of the coating thickness, corresponding to the material feed rate variation law shown in Fig. 7.
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As it follows from the analysis of the diagram, the coating thickness for the selected approximation varies
according to the linear law.
4. Conclusions

The paper presents a mathematical model of the spraying process. This model can be used for calculating
technological parameters providing deposition of coatings with a predefined law of thickness variation, includ-
ing coatings with uniform thickness. For control of the coating thickness it is proposed to implement spraying
with time-dependent material feed rate which may be calculated using a specially developed technique. The
efficiency of this technique is proved with numerical examples given for the simple case with a circular disc.
In particular, the material feed rate variation law providing deposition of uniform coatings and coatings with
linear thickness variation is calculated. The proposed calculation technique can be easily used for modeling
spraying of coatings with a more complex thickness variation law and for developing software products which
would facilitate the work of mechanical engineers designing spraying processes.

Future research can be concentrated on generalization of the proposed model for the case of articles with
curved surfaces, particularly, surfaces of revolution. To account for deviation of the spray axis from the nor-
mal to the surface of an article, the model of off-angle spray, suggested by Leigh and Berndt [22], may be
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useful. The technique described by Conner et al. [10] is also interesting. According to this technique, for cal-
culation of the coating deposition rate in a specified point of the surface, this point is mapped into the point of
the basic plane, for which distribution of the deposition rate is specified. Mapping is constructed so that the
surface point of interest and its image belong to the same trajectory of the particles of the sprayed material.
Then a coefficient is introduced, describing the relation of the area of the small element of the surface, con-
taining the point of interest, to the area of the small element of the basic plane, containing the image of this
point. The relation of deposition rates in the mentioned points is determined from the law of conservation of
matter.

Now preliminary results on modeling of spraying of coatings onto surfaces of revolution are available [23].
The modeling technique is based on adaptive integration [8] and the projective method described by Conner
et al. [10].

The advantage of the proposed method of coating thickness control is the simplicity of its implementation:
it does not require any complex manipulators since spraying is done with simple kinematics of gun motion
relative to an article. The material feed rate can be changed with the help of simple tools such as a screw feeder
with variable-frequency electric drive [14]. The advantage of the proposed technique of calculation of spraying
parameters is the simplicity of its algorithmic implementation and reduced computing time required for
calculation.
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