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Bautin Ideal of a Cubic Map
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Abstract—We compute the radical of the ideal generated by the first three focus quantities of
maps defined by irreducible branches of a cubic curve on the real plane. It is shown that the ideal is
not radical in this case. © 2000 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Cousider a map of the form

w= f(z) = -z~ i anz"h

n=1

€R. (1)

b

Denote by f? (p € N) the p*h iteration of map (1).

DEFINITION 1. A singular point z = 0 of map (1) is called a center if 3¢ > 0 such that¥ z : |2
the equality f*(z) = = holds. and a focus otherwise.

< €,

Clearly, if the right-hand side of (1) is a polynomial, then = = 0 is a center if and only if

f=)

DEFINITION 2. A point zo > 0 is called a limit cycle of map (1) if zo is an isolated root of the
equation

=.

I

fAz) -z =0 (2)
To investigate bifurcations of limit cycles of map (1), one can find the return (Poincaré) map

P(z) = fQ(z) =2+ 0pz% f gzt + o (3)
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or compute a Lyapunov function {1,2] defined by a formal series as

O(z) = 2 <1 + i bw") , (4)
k=1

with the property
B(F(2)) - B(2) = g2zt + 42® + -+ + g2 4o 5)

We call the coeflicients go; focus quantities.

Consider the map 2z — w, defined implicitly by the equation

n
U(z,w) =w+ 2z + Z a;jz'w’ = 0. (6)
it+g=2

This equation has an analytic solution of the form (1),
w=f(z)=—z+ . (7)

DEFINITION 3. We say that polynomial (6) defines (or has) a center in the origin if the equation
U(z,w) = 0 has solution (7) such that the map f has a center in the origin, and we say that (6)
defines a focus in the origin, if f has a focus.

Thus, the problem arises as to how we can find in the space of coefficients {a;;} the manifold
on which the corresponding maps f have a center in the origin and to investigate bifurcations of
limit cycles of such maps in a neighborhood of the origin.

The case of the cubic polynomial

U(z,w) = z +w+ Az* + Bzw + Cw® + D2* + Ez%w + Fzw? + Gu?®, (8)

where A, B,...,G € C, was considered in [1,2].

Denote the real space of coefficients of polynomial (8) by £, d-neighborhood of o* = (A*, B*,
...,G*) € £ by Us(a*), and let fo be map (7) corresponding to a given point « = (4, B,
..., G) of the parameter space, i.e.,

fa=—2 (1+iak(A,...,G)zk> . 9)
k=1

DEFINITION 4. Let n, . be the number of limit cycles of the map f, in |z| < e. Then we say
that a singular point z = 0 of the map f,» has cyclicity k with respect to space £ in the origin
if 389, €g such that for every 0 < € < ¢g and 0 < § < dy,

max ng.=k.
a€Us(a*)

In the case when ¥(z,w) is a quadratic polynomial (i.e., D = E = F = G = (), it was shown
in [1] that ¥(z,w) defines a center in the origin iff one of conditions
(i) A-B+C =0,
(i) A—C =0
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holds. and the cyclicity of the origin for every map f defined by
Y(z,w)=0

equals 0.

Iu [2], it also was proven that the cyclicity of the singular point z = 0 of the map f=—z4--
defined by polynomial (8) and having a focus in the origin equals 2. Thus, there remains an open
problem to investigate bifurcations of small limit cycles from a center.

Let us denote by 7 the ideal generated by all focus quantities of the map, defined bv polyniinial
{(8). T = {g2,94,9s6,-..). We call the ideal Z the Bautin ideal of polynomial (8). Tt follows from
results of [2] that if the ideal Is = (g2, 94, gs) were radical. then the cyelicity of any center defined
by polynomial (8) would be equal to or less than 2.

In the present paper, we show that the ideal I3 defining the center variety of polvnominl (8)
is not radical, and therefore, it is impossible to give an estimation for cyclicity of centers defined
by polynomial (8) by directly applying Bautin’s method [3].

2. COMPUTING OF THE RADICAL OF THE IDEAL /5.

To find the radical of the ideal I3 = (g2, g4, g6}, we will use the following proposition proven
in [2].
THEOREM 1. The center variety of polynomial (8) is equal to
V(S)UV(H)UV(T),
where
S={(A-B+C,D-E+F-G), H=(A-C,D-G,E-F). and T ={t ts..... t2),
with
ti = D?* - DF + EG - G?,
ty = —2CDE + BDF + CDF + CEF — AF? - 3BDG + 3CDG + 4AEG
—2BEG — CEG + BFG — 2CFG — 3AG? + 3BG?,
t3 = —~C?D + C*E — BCF + C?F + F? 4+ B%G — BCG — C*G + 4DG — 4EG — 2FG + 5G2.
ty = 2AD — BD — CD + CE — AF + AG + BG — 2CG,
t; = —BCD + C?D + C*E — ACF + 2DF + 2ABG
— ACG — BCG - 2DG - 4EG + 2FG + 2G?,
to = —2B%D + 5BCD — C?D — 4ACE + 2BCE — C*E + 8DE + 2ABF — ACF — 2BCF
+2C*F —6DF —4EF 4+ 2F? + 3ACG — 3BCG + 2C*G — 10DG + 8EG + 2FG — 8G?2,
tr=A*-AB+BC-C*-D+E—-F+G.

I

Focus quantities computing by means of the algorithm from [2] are

92=2(-A*+AB-BC+C*+D-E+F-G),

g1 = —2ABD + 2ABG + 2ACD + 2ACE — 2ACF — 2ACG +2B%*D - 2B%*G
—4BCD — 2BCE + 2BCF +4BCG + 2C?D + 2C*E — 2C*F — 2C*G
+4D?* - 4DE + 2DF — 2DG + 2EF — 2EG — 2F% + AFG — 2G?,

g¢ = 2ABEG — 2ABFG + ACDF — ACDG ~ ACEF — 3ACEG + ACF*
+2ACFG + ACG? — 2B%EG + 2B*FG + BCD?* — BCDE — BCDF
+2BCDG + 2BCEF + 3BCEG — 2BCF? — BCFG — 3BCG? — 3C*D?
+4C*DE — C?*DF — C*DG — C*E? - C?EF — C?EG + 2C*F? - 2C*FG
+4C?G? + 2D — 2D*F — 2D?F 4+ 4D*G + 4DEF — 8DEG — 2DF? + 6DFG
—2DG? + 2E%G — 2EF% + 2EFG — 2EG? 4+ 2F® — 6F%G + 8FG? — 1G>,
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We will show that the following statement holds.
THEOREM 2. The ideal I3 = (g2, g4, 96) generated by the first three focus quantities of map (8)
is not radical in [A,B,...,G)].
The proposition is a simple corollary of the following lemma.
LEMMA 1. The ideals S, H, T defined in Theorem 1 are prime.
PROOF OF THEOREM 2. According to Theorem 1 and Lemma 1,

rad (Z) =rad(I3) = SNHNT.

We note that the intersection V N W of the ideals V = (v1,...,v,) and W = (w,...,w,) in
k[x1,...,x,] is equal to the first elimination ideal of the ideal

(tv1, vy tUm, (L= Dwy, ..., (1 — Dw,) C k2, ,25]

(see [4, Theorem 11, p. 186]). To compute the first elimination ideal of this ideal, one finds a
Groebner basis with respect to a lexicographic order in which t is greater then the z; and takes
the elements of this basis which do not contain the variable ¢ [4, p. 114].

Computing by means of the algorithm, we get the radical of I3. Then we find that rad (I3)
and I3 have different Groebner bases. Therefore, rad (I3) # I3, i.e., I3 is not a radical ideal. |§

Let R be any ring, I be an ideal of R, and R’ = R/I. For a polynomial f € R|zy,...,z,], we
denote by f the polynomial in R'[z1,...,,] obtained by reducing the coefficients of the powers
of A, i.e., we have a homomorphism,

R[:Ela"-vl'n] “_“‘RI[:El,...,(L'n],

_ (10)
We also denote the image of an ideal K C R[zy,...,Z,] in R'[z1,...,z,] by K.

LEMMA 2. Let f,...,fi € R[z], g € R[z,w], (h,....,hg) = I C R, R = R/I,f; € R'[z],7 €
R'[z,w), then

<‘7‘_1—9' "’E’§>R’[I,w] mR,[‘T] = <f11" 'afl7gvh17"'ahk>R[:c,w] mR[‘T]

PROOF. Let a € (f1,... ,ﬁ,g)R,[I,w] NR'[z]. Thena =3 fib; +gc € R'[z]. Put X =5 f;b; +
3" gc € R[z,w]. There exists Y € R[z] such that Y = a. Therefore, X =Y + 3_ h;R[z,w] and
then Y = X — 5> h;R[z,w] € R[z] and Y =a. WehaveY € (f1,..., fi,g,h1,.-., &) N R[z] as
desired.

Vice versa, let

a€(fi,--i 9, b, hi) gy N Rl

Then 3X =3 fib; + > gc+ Y h;d, € R[z,w]. Hence, taking into account that h; = 0, we get
X € Ra]N{FiT7) prip - [

To complete the proof of Theorem 2, it remains to prove Lemma 1.
We use the method, described in [5], which is taken from the work in [6]. Namely, we use the
following statement {5, Corollary 4.4.9, p. 242].

PROPOSITION 1. An ideal I C R[z] is prime in R[z] if and only if
(i) I N R is prime;
(ii) Tk'[z] is prime in k'[z) where " = RNI, k' = R'R"~, -~ : R — R'[z);
(iii) Tk'[z) N R'[z]) = T.
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ProoOF OF LEMMA 1. For S and H, the statement of the lemma is obvious. To prove priniality
of T, we use Proposition 1.
Following Proposition 1, we first need to show that the ideal

J,=TnNC[B,C,...,G

is prime.

Computing, we see that the polynomials tq,...,t; form a Groebner basis of the ideal 7" with
respect to the lexicographic order A > B > C > D > E > F > G. Therefore, J; = T N
C[C,...,G] = (t1) is prime because of irreducibility of ¢; and J» = (t;,t3). We again apply
Proposition 1 to prove that J, is prime.

(i) Jo =TNC[B,C,...,G] = J; is prime.
(ii) Note that Jok'[B] = (f3). Let us show that (f3) is irreducible in &'[B].

t3 =GB* - C(F +G)B +v,

where R’ = C[C, D, E, F,G]/(t,), k' = C(C,E, F,G)[D], with D? = FD — EG + G* and
because of t; = D2 — FD+ EG —G?, v =—-C?D+ C?E 4+ C?*F + F? - C*G + 4DG —
4EG —2FG + 5G*.

The polynomial {3 is irreducible in k[ B] if and only if its discriminant D = C?(F4G)?% -
4Gv ¢ (k')?, i.e., it is not a square. If it were a square, then due to unique factorization
in R'[B], D would be reducible in R’|B]. However, it is irreducible, because if it were
reducible in R'[B], then it would be reducible in C[B,C, D, E, F, G} also.

(iii) Note that according to Proposition 4.4.4 from [5], if R is an integral domain with &,
its quotient field, I C A = R[z1,...,z,] is a nonzero ideal and G = {g;..... gr} is its
Groebner basis with respect to some term ordering, then

Ik[zy,...,zp) N Rz1,...,xy) = [Rs[T1,.. ., xn) NR[z1,...,2,], (11)

where s =lt(g;)1t(g2) . . . lt(g¢) and R, is the localization of R with respect to G. Moreover,
ifge A, g #0, and ¥y is a new variable, then due to Proposition 4.4.1 from [5],

TA;NA=(I,yg—1)NA. (12)

We have to show now that Jok'[B] N R'[B] = J,. Taking into account Lemma £ and
formulae (11),(12), we get
JoKk'[B] N R'[B) = JoR;[B] N R'[B] = {£3,yG — 1) N R'[B]
= (t3,4G — 1) popy g N R'[B] = (ts,t1,¥G — 1) gy, g N R[B]
= {t3,01,9C — Dep.popprc 1 CW B.C.D. E, F,C)
= (t3,t1,yG — 1) NCly,B,C,D,E,F,G] = {t3,t,) = {t3,) = Jo,

wherey > B >C>D>E>F>@G.
To complete the proof, there remains to consider the ideal T'.

(i) The first condition of Proposition 1 has already been proved.
(i) We have

C[B,C,D,E,F,G)|
<t17t3> ’
T = TR'[A],

R =

C[B,C.D,E, F.G]

k' = quotient field of
4 (t1,ts)
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Note that
TK'[A] # (1). (13)

Indeed, otherwise, we have

to@y + -+ + tray = 1,

where &, € k’[A]. Multiplying by a suitable element from R’, we get
bafy+ -+ 10, = B,

where §; € R'[A], 0 # 3 € R'. Hence,

tofo + -+ trfr + 101 + 383 = 5,

where §; € C[4,B,...,G], 8 € C[B,...,G]. Therefore, § € (t;,...,t) NC[B,...,G| =
(t1,t3) due to the Groebner basis property. That contradicts 8 # 0 on R'. It follows
from (13) that if among polynomials £;, there is Z;, of the first degree, then Tk'[A] = (t,,).
Hence, Tk'[A] = (t2,%4,5,%6,t7) = (f2) and %5 is irreducible, because it is a polynomial of
the first degree in k'[A].
(iii) It remains to show that Tk'[A] N R'[A] = T.
Tk'[A] = (f1). 4 has degree 1 in A, and therefore, is irreducible. Indeed, the coefficient
of A in %y is equal to 2D — F + D and is not zero, because it lies in R’ and is polylinear
in all variables, but ¢1,t3 are not polylinear.

From (11), (12), and Lemma 2, we get

Tk'[A] = @)K (4] = (f,w(D —F + D) — 1) " R'[4]

= <t4,’U)(2D - F+ D) — 1,t1,t3> N R[A]

C {ts,w(2D — F + D) — 1,t1,t3,t4,t5,te,t7) N R[A] = (t1,...,t7) =T.

Therefore, T is prime. |

REMARK. Following the approach suggested above, one can also avoid very laborious computa-
tion of syzygies in Example 4.4.20 [5].

To conclude, we have shown that the ideal, generated by three first focus quantities of map (8) is
not radical, therefore, most probably, the Bautin ideal Z of this map is not radical either. However,
it is easily seen that in the case of map (8) with homogeneous perturbations (A = B = C = 0)
and (D = E = F = G = 0), the corresponding ideals are radical. A similar situation takes place
for the cyclicity of a singular point of focus or center type in the case of polynomial vector fields.
There also, the ideals of quadratic system and the system with homogeneous cubic nonlinearities
are radical, however, the ideal of the general cubic system appears to be not radical [7,8].

We also computed the forth focus quantity of map (8) and found that gg € I3. So we believe
that Bautin ideal of the map is generated by the three first focus quantities, and therefore, the
cyclicity of the map equals two. However, to prove the hypothesis, one needs to develop a method
which can be applied in the cases when the Bautin ideal is not radical.
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