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1. Rays’ propagation in inhomogeneous media. Simulation of wave propagation pro-

cesses in inhomogeneous media is based on kinematic [1-4] and dynamic principles [5-10] for 
the process of ray propagation and wave surfaces (fronts) in different media. 

Huygens' principle of constructing wave fronts in according to algorithm of a contact 
transformation is easily implemented if the perturbation region is non-concave Fig. 1.1a 

 
Fig. 1.1a. Huygens' model for propagation of wave fronts 

 
If the emitting area has a concavity, the construction of the wave surface is shown in 

Fig. 1.1b 

 
Fig. 1.1.b 

 
Presentation of the wave front in the form of the surface is a mathematical idealization, 

because in reality, a wave is a volume configuration change of the medium points during the 
passage of a perturbation from some initial configuration to the final. In a homogeneous iso-
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tropic medium all front points have the same speed directed along the normal n , then during 
the time t  surface points are shifted by the same distance s  along the normal with the speed 
V . The wave surface at time point t t , constructed according to Huygens' principle as the 
concavity of secondary waves coincides with the surface, passing through the points lying on 
one and the same distance along the normal from the wave surface at time point t . These 
lines, which are orthogonal to the original radiating surface (in particular, points) in a homo-
geneous isotropic medium, are the rays along which the radiation energy propagates. 

According to Newton's corpuscular theory, the energy is transferred along the rays, 
the construction of which in homogeneous isotropic media is carried out with purely geomet-
rical methods. Approaches of Huygens and Newton are known as the optic and mechanical 
analogs in analytical mechanics [1-2]. With the approach of Newton is associated the analogy 
of particle motion by inertia under the influence of the initial pulse and in the absence of any 
effects during the movement. With the approach of Huygens is associated the analogy of con-
tact transformations in the Hamiltonian mechanics, representing a canonical transformation of 
generalized coordinates and momenta. 

An approach based on the construction of rays is effective in solving problems of the 
wave kinematics by geometrical methods for homogeneous isotropic media, including the 
case of transmission and reflection of waves at the interface of two media, also through the 
lens, etc. 

In the case of inhomogeneous, anisotropic, nonlinear media Huygens' approach is more 
difficult to implement and Newton's approach allows solving the problem of wave propaga-
tion more effectively, if we use the kinematic principle of Farm, according to which the per-
turbation of the medium state at the source  0 0 0 0, ,M x y z  extends to any receiver point 

 1 2 3, ,M x x x  for the minimum time  0 ,M M , which is the Farm's functional [1-4] 

 
 
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dM M
V x x x

   (1.1) 

where  1 2 3, ,V x x x  perturbation propagation speed including  1 2 3, ,x x x  that of inhomogene-
ous media,  – the distance along the ray.  

 
Fig. 1.2. Construction scheme of rays in the Farm's model 

 
For equation (1.1) are formulated direct and inverse tasks. 



25 
 

In the direct task  1 2 3, ,V x x x  is set and is possible to build surface-isochrones 

 0 ,M M C  (C  – arbitrary constant), representing a family of wave fronts. 
In the inverse task of the known  0 ,M M  is necessary to determine  1 2 3, ,V x x x , 

namely to identify the physical and mechanical characteristics of the media (media profile). 
Ray tube in a inhomogeneous medium is a figure formed by adjacent rays Fig.1.3 

 
Fig. 1.3. Ray tube 

 
We denote by A function that characterizes the change in the unit ray tube cross-

sectional area of the value of 0d  at the initial front to the current cross section 

0 0 , /d Ad       – the unit vector directed along the ray Fig. 1.4. 

 
Fig. 1.4. The change   in the ray 

 
We calculate the integral by volume of ray tube Σt  passing to the surface integral by the 

formula 

0

Σ

*

t

ndiv dv d
A A

 
 

 
 ∮  (1.2) 

Since on the side surface ,n  то 0 0 0d A d A   , hence, we obtain 
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  / 0,   div v A grad         (1.3) 

Considering the ratio of 
22v 

   (1.4) 

we obtain the equations for finding the position and shape of the wavefront. Equation (1.4) is 
called the eikonal equation, and the equation (1.3) determines the change in cross section of 
the tube. 

In particular, for the case of 2D rays and consistent positions of the front form an or-
thogonal curvilinear grid ,   Fig. 1.5 

 
Fig. 1.5. The case of 2D rays 

 
for which two kinematic equations are obtained 

1 1,         A V
V A
   

  
   

 

   
 (1.5) 

where  ,    – an angle which for linear homogeneous medium does not depend on   , be-
cause 0V V const  . As A  depends linearly on  , the rays will be straight, and the fronts 
will be circles in the plane considered. 

The law of energy conservation in the integral form is 

Σt

j jEdv P n ds
t


 
  ∮  (1.6) 

Here jP  – vector components of the energy density P  of Poynting-Umov,   E  – the 
total energy density. 

In the differential form of (1.6) we obtain 

0E divP
t


 


 (1.7) 

The energy flow is directed along the speed V , and hence along the rays. For an arbi-
trary ray tube of (1.7) follows the conservation equation 

   *
0

P AEA
t e


 

 
 (1.8) 
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where  - the distance along the ray. 
The eikonal equation (1.4) is a non-linear differential equation in partial derivatives 

of the first order type Hamilton-Jacobi, which is generally written as [11-14] 

1
1

, ; 0n
n

H q q
q q

  
   

  

   (1.9) 

where  1 nq q    – the desired function, iq  – the generalized coordinates  1,i n . 

Designating i
i

p
q





  as generalized impulses, the equation (1.9) can be written as 

 , 0i iH p q   (1.10) 

Equation characteristics (1.9) satisfy the system of ordinary differential equations 

 1
/ / /

i i
n

i i j ii

dq dp d
H p H q p H p



  
     

  (1.11) 

which can be written as 

1

,  ,  
n

i i
j

ji i j

dq dpH H d Hp
dt p dt q dt p

  
   
  


  (1.12) 

Here 2 n  component    , ,i i i iq q t p p t   which are solutions of the system (1.11) are 
called the characteristics of the equation (9). 

If i iq x  – the Cartesian coordinates, and    1 2 3, , , ,H H p r r x x x  , the Hamilto-
nian characteristic equations (1.11) - (1.13) can be written in the vector form 

,  dr H dp H
dt p dt r

 
  
 

 (1.13) 

,   d Hp p grad
dt p


  




   (1.14) 

 Differentiation respect to the vector, means differentiation with respect to the appro-

priate coordinate, for example i

i

dx H
dt p





. Thus, the ray is in the coordinate space of a projec-

tion  i i iq x x t   of the eikonal equation characteristics (1.4). In the phase space  ,i ip q  
the characteristic     , i i i iq q t p p t   is called the ray equations. 

If you found the solution of equations (1.13) in the form of    , r r t p p t  , then the 
solution of equation (1.14) can be written as 

0

0

t

t

Hp dt
p


 

   (1.15) 

There are different forms of recording the ray equations (1.13), depending on the kind 
of H , coordinate system selection. For example, we write H  (eikonal equation) as 

 2 21 0,              
2

H p n r p grad        (1.16) 

where n  – the refractive medium index. 
Then the equations for the rays have the form of 
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dr p
dt

  (1.17) 

 2 21 1  
2 2

dp n r grad n
dt

    (1.18) 

which shows that in an isotropic medium rays are orthogonal to the wave fronts. 
Most convenient to use instead of the parameter t the parameter of the arc lengths of the 

curved ray in a inhomogeneous medium 
ds dsdt
p n

   (1.19) 

then the expression for the eikonal (1.16) has the form 

 
0

0

s

s

n r ds     (1.20) 

If the eikonal equation (and) or H-equation of Hamilton-Jacobi (1.5)  will be written in 
the form of 

    2, 0,  H p r p r r p p     (1.21) 

then the rays equations (1.14) have the form 

 ,                dr p dp n grad n
ds n dt

    (1.22) 

and the expression for the eikonal (1.20). 
To this same expression for the eikonal respond equations for the rays, written in the 

form 
  ,  lndr d grad n grad n grad n

ds ds n n
 

     
 

 (1.23) 

where *  /grad n dr ds  – derivative with respect to the ray, the operator 

   grad grad grad    determines the gradient calculation in the direction perpendicular 
to the beam (along the wave front). 

According to the optical-mechanical analogy the system of equations (1.14) can also 
be written in the form of Newtonian mechanics for potential forces (in the form of second-
order equations) 

2
2 2

2

1   or  
2

d r d drgrad n n grad n
dt ds ds

 
  

 
 (1.24) 

where the role of the forces potential is played by  2n r . 
The geometry of the spatial curve (ray) is characterized by the curvature k  and tor-

sion , which are calculated according to the formulas 
   grad n grad n grad nk

n n n
    

      
    

 (1.25) 

where 0
2

 


  – the angle between the ray (vector sin ) and vector  grad n . 
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The radius of the ray curvature 1k  . As in a homogeneous medium n const , then 
0k  , ie rays are straight lines. 

The torsion is calculated according to the formula 

 
1     
2

n rot n b rot b   (1.26) 

where n  – the unit vector the main normal, *b n     the binormal unit vector in the Frenet 
trihedron, moving along the ray. 

The expressions for n  and b  can be represented by the index of refraction  n r  ac-
cording to the formulas 

1 1  ln ,   grad nn grad n b
k k n

 
   

 
 (1.27) 

Then 

   
1 1 * ln  lngrad b grad n grad grad n b
k k 
     
   

 

For planar curves 0 , for example in layered media. 
Discussed equations correspond to coordinate method of setting a motion in mechanics. 

Natural way to set a motion in mechanics corresponds to the consideration of the kinematics 
of the rays in the ray coordinates, related to the initial position of the wave front [4,7,15]. 

On the surface of the radiating body  curvilinear coordinates can be introduced ,   Fig. 
1.6 

 
Fig. 1.6. The ray coordinates 

 
so that 

   0 0 0 ,r r t r     (1.28) 

The coordinate lines ,   are orthogonal and they are chosen, as a rule, from geodesic 
lines or lines of the principal curvatures, coordinate line s – ray, tangent to which at ,   is 
orthogonal to the front 0

tS . Coordinate system , , s   is called as ray coordinate system.  
At 0t t  you must set a condition for    0 0 ,p p t p    . The vector components 

 ,p    satisfy the equations, which follow from the eikonal equation 
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   
0 020 2 0 0 00 0 0

0 ,  ,  ,  
ξ ξ ξ η η

rr rp n r p p p   
  

    

   (1.29) 

If the initial emitting surface is plane, then the coordinate system is a Cartesian system, 
and is connected with the surface 0

3 0x  . Then assuming that 0 0
1 2,x x   , we obtain 

 
2 2

0 0 0 20 0 0 0
0,  ,  x y zp p p n r       

       
      

   

   
 (1.30) 

The equation of the initial surface can be written as 
 , ,  1,2; 1,2,3i ix x u t i     (1.31) 

We introduce the first and second quadratic form of the surface 0
tS  

* ,  *i i i i
i ig x x b x x      

     (1.32) 

Then the differential equations for the rays have the form [4,7,10] 

,   
i i

i ix xc c
t t
 

 
 

 
 (1.33) 

i
i i i

i
xg x g x c

t t
   


 

  




 
 (1.34) 

To close the system (1.31), (1.32) it must be supplemented by equations for the mean 
and Gaussian curvatures of the surface. 

In the particular case when the wave front propagates parallel to itself expressions for 
the mean and Gaussian curvatures have the form 

0 0
2

0 0

ΩΩ
1 2 Ω

sK
s s K



 

0
2

0 01 2
KK

s K sK


 
 (1.35) 

The expression for the eikonal in the coordinates , , t   is written in the form 

     
0

2
0, , , , ,

t

t

t n r t dt             (1.36) 

Coordinates ,   on the surface 0  identify a ray coming from the surface at the mo-
ment 0t t . For different ,   we obtain a family of rays, therefore, at the initial time from 
the surface 0  comes the bundle of rays, that allows you to build a complex radiation pattern, 
on the basis of which is determined the wave field structure in the physical space. 

In the phase space  ,p r  the phase portrait under certain conditions, can also be quite 
complicated. 

In the spatial of generalized coordinates iq , which are not related to the wave surface 
and which are orthogonal curvilinear coordinates, eikonal can be written as 

 
 

 
23

2
2

1

1,
2 h

j
i i i

i j i

p
H p q n q

q

  
  

  
  (1.37) 

where  h j iq  – Lame coefficients for curvilinear coordinates iq . 
The system of equations for the rays in this case has the form 
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3
2

2 2
1

1 1,   ji i
i j

ji i j i

hdq dp np n p
dt h dt q h q


  

 
  (1.38) 

The expression for the eikonal is written as 

 
0

2 2 2
0 ,         n r t dt p n    





   (1.39) 

If you enter a pulse components in curvilinear coordinates according to the formulas 
1 ,  1,
h

ˆ i
i

i i i

Pp i n
h q


  



  (1.40) 

then the equations (1.36) are written as 
1
h

ˆi
i

i

dq p
dt


31 ˆˆ ˆ ˆ1 j ji i

j i
j ii i i j i

p hdp hnn p p
dt h q h h q qj

 
   

   
  (1.41) 

In many specific problems of ray propagation in inhomogeneous media is convenient to 
use angular variables, for example, in the case of the spherical symmetry. Assuming that 

1 2 3, ,q r q q     and considering that in this case 1 2 3h 1, h ,h sinr r    , equations 
(1.39) can be written as 

2 2
0

1 1 1,   ,  
ˆ

 ,   
sin

ˆˆ ˆ ˆ ˆr
r

p dpdr d d np p n p p
dt dt r dt r dt r r r


     





 

 


 

21ˆ ˆ ˆ *ˆ r
dp nn p p ctg j p
dt r

 
   

 


 


 

ˆ
ˆ1 sin cos *

sin
ˆ ˆ ˆr

dp nn p p p p
dt r

 
   

 



   
 

 

(1.42) 

Here 1 1,  ,  
sin  

ˆ ˆ ˆrp p p
r r r
  

  
  

 

  

  
.  

The eikonal equation is written as 
22 2

21 1
sin  

n
r r r

      
      

       

  

  
 (1.43) 

or 
2 2 2 2ˆ ˆ ˆrp p p n     (1.44) 

In the case of a plane task  2D- dimension, entering angle   by relations 
coˆ srp n   

sˆ inp n   
(1.45) 

we write the equations for the ray in the form of 
 1 1  ,   2
rnd d n dtg

dr r dr nr r r dr
 

    
  

      (1.46) 

Thus, depending on the geometry and mechanics of the particular task you can choose a 
suitable system of coordinates and shape of the ray equations. The most commonly used are 
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phase coordinates  ,r p  and radial coordinates  , , s   so that the solution of the radial 
equation is represented as 

   , , ,  , ,r r t p p t      (1.47) 

Here, the parameter t  It related to the distance s  along the ray (coordinate line), and 
,   identify the ray on the initial surface 0

0 at tS t t . If the wave is emitted by a limited sur-
face area, defined by the relation  0 0 ,r r   , then the rays form a family of rays emanat-
ing from this area. 

The conversion from the Cartesian coordinate system to the ray system is defined 

by Jacobian  

 
1 2 3, ,

, ,
x x x

D
t




  
 and will be one to one, if D 0 . 

A lot of wavefronts obtained in accordance with the principle of Huygens (contact 
transformations) form a family of equal phase surfaces, eikonal for each of them is written in 
the form 

     
0

0 2
0, , , , ,

t

t

t n r t dt const               , ,r r t    (1.48) 

From the first equation (1.48) for each 0  can be found  , ,фt t t    and it is inserted 
into the second, then the family of wave fronts of equal phase (phase fronts) is determined by 
the ratio 

   0 0, , , , , ,ф фr r t r            (1.49) 

The family of rays emitted by the limited surface area  0
tS  forms a the bundle of rays. 

This means that the rays propagate not independent of each other, but they interfere. Due to 
the interference of secondary waves a significant contribution to the building of the fronts 
contribute only those rays, for which the phase difference does not differ by more than / 2  (
  – wavelength). 

Surfaces, where condition 
 | 0

K Kt SD   is violated are referred to as caustic 

   | 0           at   
K K kt SD r r t  (1.50) 

The position of caustics is defined from the equation of the family of rays  , ,r r t    
and condition   0D t   

   , , ,   , , , 0r r t D t      (1.51) 

Excluding t  we obtain 
    , , , ,kr r t r        (1.52) 

where  ,kr    determines the equation of the caustic in curvilinear coordinates of the initial 
surface. In solving problems for caustics it is convenient to introduce on the caustic surface 
own caustic  coordinates  , ,   , where, ,   are curvilinear coordinates located on the 
caustic, and   is measured along the line characterizing the removing from the caustic. 

The value J  Excluding t  we obtain 
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 (1.53) 

is called the divergence of rays. 
From (1.51) follows that on the caustic 0J  , ie cross-section of the ray tube decreases, 

energy increases, the rays touch caustics and change the direction. The classification of caus-
tics is considered in the catastrophe theory [16]. On caustics and in their neighborhood classi-
cal spatial ray solutions are not applicable. There are methods for caustic rays, allowing to 
solve a number of tasks for caustics [2]. 

The wave fronts pass through the interface between the physical and mechanical 
properties of the medium, wherein the interface can have a complicated geometry. The study 
of the interaction of waves with obstacles (diffraction waves) with the help of radiation meth-
ods is considered in the geometric theory of diffraction [ ]. Using ray method in this case is 
based on the principle of locality, whereby in the neighborhood of each interface point the 
incident, reflected and refracted waves can be considered plane waves. 

On Fig. 1.7 is shows a classic scheme of wave incidence on the interface between two 
media with different physical and mechanical properties. The plane of ray incidence contains 
vectors: of normal  N , incident incp , refracted refrp  waves. At the interface the following 
conditions must be satisfied 

 at   inc refl refr r Q     (1.54) 

 
Fig. 1.7. A scheme of wave incidence on the interface between two media 

 
In view of the conditions (1.53) tangential to the interface line Q  components of the 

vectors have the form of 
 .,  .,         inc inc inc refl refl reflp grad p grad        refr refr refrp grad  

       , inc refl refrt t
p p p p p N pN   

 
(1.55) 

Here by the index τ tangential vectors are indicated for normal components of these 
vectors, representing at the same time normal derivatives of eikonals , , inc refl refr   . We have 
the relations 

       
222 2

1 1,    , inc inc refl reflN t N t
p n p p n p        

22
2 ,  at    refr inc tN

p n p r Q   (1.56) 
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Designating with , , refl refr    respectively, the angles of incidence, reflection, refrac-
tion, we write the equation in the form 

1 1 2sin sin sinrefl refrn n n     (1.57) 

ie must be performed mirroring laws  
refl    (1.58) 

and the law of refraction (Snellius law) 
2

1

sin
sin refr

n
n





 (1.59) 

With these equations eikonal normal derivatives can be written as 

1 cos ,   refl inc n r Q
N N

 
  

 

 
 2 2 2

1 2 1cos sinrefr
refrn n n

N


    



   (1.60) 

Ratios (1.52) – (1.57) give all the necessary formulas for finding rays and eikonals of 
reflected and refracted waves. 

The surface waves can exist at the interface of two media. The field of these waves de-
creases exponentially by leaving at the normal from the surfaces along which they propagate. 
At a smooth change of the geometrical and mechanical properties of the surface, in the scale 
of the wavelength, you can build surface rays and fronts [ ]. 

At a waves’ diffraction on the bodies of different geometry diffraction rays propagate in 
the shadow zone behind obstacles, which are divided into two main types: 

1. Edge rays, sources of which are the fins (edges), and the tips on the bodies Fig. 1.8 

 
Fig. 1.8. Edge rays 

 
2. Slipping rays (creeping rays) Fig.1.9 

 
Fig. 1.9. Slipping rays 

 
3. Diffraction rays of the lateral wave [2,8] in the presence of the refractive of the inter-

face Fig.1.10 
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Fig. 1.10. Diffraction rays 

 
4. Complex rays for waves with a complex eikonal, with which you can build rays in 

the caustic shadow zone, surface and leaky waves, etc. Fig. 1.11 

 
Fig. 1.11. The rays in the caustic zone 

 
An extension of this kinematics of the spatial rays are the space-time rays, resulting in 

tasks of stationary waves' propagation, rays in anisotropic stationary media with temporal and 
spatial dispersion. The kinematics of the different types of space-time rays (complex, edge, 
etc.), which are related to the space-time geometrical theory of diffraction can be considered. 

Due optic and mechanical analogy the considered spatial rays correspond in the analyti-
cal mechanics with scleronomic systems, and the theory of space-time rays is similar respec-
tively to the rheonomic systems [2]. 

To be continued. 
  




