обучающихся разделяется на группы по 2-5 человек с примерно одинаковым профессиональным уровнем. Основанием для такого подхода является разный исходный уровень подготовки студентов по рабочей профессии. Количество студентов в группе детерминировано производственными условиями и технологией производства. Созданные микрогруппы работают по индивидуализированному плану с выходом в конце каждого модуля на необходимый профессиональный уровень.

Интенсифицируя межличностное и межгрупповое общение будущих педагогов-инженеров, групповое взаимодействие обогащает их коммуникативный опыт, формирует умения вести взаимообогащающий диалог, аргументировать и защищать свою точку зрения, устанавливать межличностные контакты, конструктивно разрешать возникающие противоречия, толерантно относиться к инакомыслию, плюралистической трактовке изучаемых вопросов, использовать вербальные и невербальные средства речевой экспрессии.

Особенностью педагогического руководства курсовыми и дипломными проектами являлось систематическое проведение групповых консультаций. В качестве руководителя могут выступать не один, а два и более специалистов в разрабатываемых вопросах.

УДК 681.3(075.8)

Пчельник В.К.

К ВОПРОСУ РЕАЛИЗАЦИИ МЕТОДА ДАНИЛЕВСКОГО С МАТРИЦЕЙ ПЕРЕМЕННОГО РАЗМЕРА В ЭЛЕКТРОННЫХ ТАБЛИЦАХ MS EXCEL

ГрГУ имени Янки Купалы, Гродно

Представляется интересной возможность реализации вычислительной схемы Данилевского [1] для определения коэффициентов характеристического многочлена в электронных таблицах MS EXCEL. Это дает возможность преподавателю

подготовить достаточно много вариантов заданий для самостоятельной работы студентов, имея полностью решенные задачи с промежуточными вычислениями. В [2] предложен вариант решения задачи для матрицы постоянного размера.

Рассмотрим реализацию поставленной задачи для неисключительных случаев [1]. Пусть размерность матрицы равна $2 \le n \le 8$ (ячейка B2). Предлагается реализация вычислительной схемы, приведенной в [1].

На рисунке 1 в диапазоне D3:К10 расположена исходная матрица, которую следует привести к нормальной форме Фробениуса. В диапазон D11:К11 переносится последняя строка исходной матрицы. В ячейку L11 вводится число -1. В ячейку D12 вводится формула (1), которая затем распространяется на диапазон E13:L13. В диапазон C14:C21 переносится содержимое ячеек D12:К12 по формуле (2). Формулы (3) — (4) нужны для отсчета величины смещения. В ячейку D14 вводится формула (5). Ее следует распространить на весь диапазон D14:К21. В ячейку D22 вводится формула (6), которая затем распространяется на диапазон E22:К22. В ячейку L12 вводится формула (7).

No	Формула
1	=ECЛИ(D\$2<>"";СУММПРОИЗВ(СМЕЩ(\$C\$3;0;0;\$B\$2;1);СМЕ
	Щ(D\$3;0;0;\$В\$2;1));"")
2	=ЕСЛИ(B14<>"";ГПР(B14;\$D\$2:\$K\$11;10);"")
3	=ЕСЛИ(ЕОШИБКА(В3+1);"";ЕСЛИ(В3+1<=\$В\$2;В3+1;""))
4	=ECЛИ(EOШИБКА(D2+1);"";ECЛИ(D2+1<=\$B\$2;D2+1;""))
5	=ECЛИ(\$B14<>"";EСЛИ(D\$13<>"";EСЛИ(D\$13<>\$B\$13;EСЛИ(\$B
	14<>\$B\$2;
	D3+BПР(\$B14;\$B\$3:\$K\$11;\$B\$13+2)*D\$12;
	D\$11+BПР(9;\$В\$3:\$К\$11;\$В\$13+2)*D\$12);
	EC-
	ЛИ(\$B14<>\$B\$2;ВПР(\$B14;\$B\$3:\$K\$11;\$B\$13+2)*\$L\$12;D\$11*\$L\$12
));"");"")
6	=ECЛИ(D\$13<>"";СУММПРОИЗВ(СМЕЩ(\$C\$14;0;0;\$B\$2;1);
	СМЕЩ(D\$14;0;0;\$B\$2;1));"")
7	=ЕСЛИ(ЕОШИБКА(-L11/СМЕЩ(J11;0;B13-7;1;1));"";-
	L11/СМЕЩ(J11;0;B13-7;1;1))

Далее следует выделить диапазон C12:L22 и удалить в нем все знаки \$. Копируется диапазон D12:L12 с формулами в D23:L23. Выделяется диапазон A13:L23 и вставляется, начиная с ячейки A24, 6 раз. В диапазоне D88:К88 получены коэффициенты характеристического многочлена исходной матрицы.

На рисунке 4 приведено решение для n=3.

	A	В	С	D	E	F	G	Н	1	J	K	L	Q
2		8		1	2	3	4	5		7	8		
3		1	0	2	5	2	7	3		4	1		
4		2	0	6	1	6	7	1	7	3	3		
6		3	0	7	5	4	1	1	7	2	4		
6		4	0	4	6	4	1	2	1	7	6		
7		5	0	7	4	1	4	1	2	2	7		
8		6	0	5	1	2	3	5	1	3	3		
9		7	0	5	6	6	4	6	3	5	7		
10		8	1	4	1	6	5	5	3	5	3		
11		9		4	1	6	5	5	3	5	3	-1	
12				-0,8	-0,2	-1,2	-1	-1	-0,6	-1	-0,6	0,2	
13	1	7		1	2	3	4	5	6	7	8		
14		1	4	-1,2	4,2	-2,8	3			0,8	-1,4		
15		2	1	3,6	0,4	2,4	4	-2	5,2	0,6	1,2		
16		3	6	5,4	4,6	1,6	-1	-1		0,4	1,2 2,8		
17		4	5	-1,6	4,6	-4,4	-6	-5		1,4	1,8		
18		5	5	5,4	3,6	-1,4	2	-1	0,8	0,4	5,8		
19		6	3	2,6	0,4	-1,6	0	2	-0,8	0,6	1,2		
20		7	5	1	5	0	-1	1	0	1	4		
21		8	3	0	0	0	0	0	0	1	0		
22		9		63	112	-33	-15	-31	32	25	74	-1	
23													
24													

Рисунок 1 – Получение «заготовки» для копирования итераций

٦	Α	В	С	D	Е	F	G	Н		J	K	L
24	2	6		1	2	3	4	5	6	7	8	
25		1	8	0,64179	-1,1343	-0,0746	0,95522	-0,5821	0,04478	0,08955	-1,2836	
26		2	19,8	-1,597	-1,7239	-1,791	-2,5746	-1,9701	0,07463	-0,3507	-0,306	
27		3	24	0,52239	-0,6791	-1,4328	-1,5597	0,22388	0,0597	-0,3806	-0,5448	
28		4	51,3	-2,7612	0,58955	0,71642	1,52985	-1,6119	-0,0299	1,4403	-0,9776	
29		5	13	1,8806	0,95522	2,64179	0,98507	-0,194	0,01493	0,02985	1,23881	
30		6	33,5	0,16418	0,18657	-0,5075	-1,6045	1,64179	0,10448	-1,291	1,17164	
31		7	14,8	0	0	0	0	0	1	0	0	
32		8	0,75	0	0	0	0	0	0	1	0	
33		9		-125,43	-10,537	-16,299	-43,179	-68,328	20,1791	16,3582	-24,134	-1
34				-1,8357	-0,1542	-0,2385	-0,6319	-1	0,29533	0,23941	-0,3532	-0,0146

Рисунок 2 – Вставка копий

	Theymore Detable Rolling											
68	6	2		1	2	3	4	5	6	7	8	
69		1	2393	-0,5891	0,00067	-0,0147	0,01145	0,14429	0,15209	-0,4393	0,18268	
70		2	-1118	0,8558	0,00145	-0,0292	-0,0105	0,10085	-0,4947	-0,8868	1,08011	
71		3	19,6	0	1	3,6E-15	0	0	0	0	0	
72		4	22,5	-1E-13	0	1	0	0	0	0	0	
73		5	-107	0	0	0	1	0	0	0	0	
74		6	-245	0	0	0	0	1	0	0	0	
75		7	157	0	0	0	0	0	1	0	0	
76		8	-409	0	0	0	0	0	0	1	0	
77		9		-2366,1	19,5891	20,0555	-67,547	-12,123	1073,53	-468,54	-770,28	-1
78				-1	0,00828	0,00848	-0,0285	-0,0051	0,45372	-0,198	-0,3256	-0,0004
79	7	1		1	2	3	4	5	6	7	8	
80		1	-2366	0,00025	-0,0042	-0,0197	0,02827	0,14731	-0,1152	-0,3226	0,37446	
81		2	19,6	1	0	0	0	0	0	0	0	
82		3	20,1	0	1	3,6E-15	0	0	0	0	0	
83		4	-67,5	4,8E-17	-9E-16	1	3,2E-15	5,8E-16	-5E-14	2,3E-14	3,7E-14	
84		5	-12,1	0	0	0	1	0	0	0	0	
85		6	1074	0	0	0	0	1	0	0	0	
86		7	-469	0	0	0	0	0	1	0	0	
87		8	-770	0	0	0	0	0	0	1	0	
88		9		19	30	-21	-79	725	-196	-7	-886	-1
89												

Рисунок 3 — Получение коэффициентов характеристического многочлена

	Α	В	С		D	E	F		G	Н	1	J	K	٦
2		3			1	2		3						
3		1		0	2	5		2						
4		2		0	6	1		6						
5		3		1	7	5		4						
0														
5														
īu								_						
11		9		_	7	5	4	\rightarrow						-1
12		ш			-1,4	-1	-0,8							0,2
13	1	2			1	2		3						
14		1	7		-5	1		-2						
15		2	5		4,6	0,2		5,2						
16		3	4		0	1		0						
10														
20														
18 17 18 20 21 22 22 23								_		_				
22		9			-12 -1	12	12	+		-				-1
23				_			1	_						-0,0833333
24	2	1			1	2		3						-
25		1	-12	_	0,416666667	-4		-7						
26		2	12		1	0		0						
27		3	12	_	0	1		0						
29														
27 28 29 30 31 32														
32								_						
33		9		_	7	60	84	+						
34		Н						_						
38		Н						_						1
37														
38														
40														
41														
42														
33 34 35 38 37 38 39 40 41 42 43 44 45				-				\neg						1
45														
17		\vdash												
00														
00														
91				_										

Рисунок 4 – Решение для n=3

ЛИТЕРАТУРА

- 1. Демидович, Б.П. Основы вычислительной математики / Б.П. Демидович, И.А. Марон. М.: Наука, 1966. 664 с.
- 2. Пчельник, В.К. К вопросу реализации метода Данилевского в электронных таблицах MS Excel / В.К. Пчельник, И.Н. Ревчук // Современные технологии и образование: проблемы, идеи, перспективы: материалы Международной научнопрактической конференции (27-28 ноября 2014 года). В 2 ч. Ч. 1 / ред. колл.: Б.М. Хрусталев [и др.]. Минск: БНТУ, 2014. С. 264-267.