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                                          Figure 2 – InP profit                                                     Figure 3 – VN acceptance ratio 

 

5. Conclusion 
In this paper, we formulate the VNE problem in FiWi access network to be an ILP where 

more comprehensive constraints are taken into account to achieve the optimal solution. Future 

works will highlight the network performance improvement including Quality of Service (QoS) sat-

isfying, energy-saving and survivability guaranteeing. 
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Abstract. Accurate analysis for pathology image is of great importance in medical diagnosis 

and treatment. Specifically, nucleus detection is considered as an important prerequisite for this 

purpose. With the rapid development of computer-aided diagnosis, several computer-aided 

diagnosis (CAD) models using machine learning and deep learning have been developed fo 

 accurate automatic nucleus detection. In this paper, we propose a nucleus detection method using 

two layers’ sparse autoencoder (SAE) and transfer learning. First, 26832 image patches of breast 

cancer are utilized to train the SAE in an unsupervised learning method, which could be regarded 

as the feature extraction process. Then, the softmax classifier are used to classify that whether an 

image patch contains a complete nucleus or not. Finally, following transfer learning and sliding 

window techniques, we use the trained SAE and softmax models for nucleus detection on liver 

cancer pathology image. Experiments demonstrate that our proposed method could achieve the 

satisfactory detection results. 

1. Introduction 

Diagnosis from pathological images remains the “gold standard” in diagnosing a number 

of diseases including most cancers 1. Nucleus detection is a critical step and it provides location 

information of each cell nuclei for further treatment. The automated detection method has become 

a research focus due to the fact that manual detection is time-consuming and operator subjective. 

Recently, computerized nucleus detection approaches have been developed over the years 

with the aim to provide efficient image interpretation automatically. For example, Wang et al. 2 
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used a cascaded classifier which uses a combination of hand-crafted features and features learned 

through CNN to detect mitotic cells. Xie et al. 3 recently presented structural regression CNN 

capable of learning a proximity map of cell nuclei and was shown by the authors to provide more 

accurate detection results. Finally, Sirinukunwattana et al. 4 proposed a Spatially Constrained Con-

volutional Neural Network (SC-CNN) to perform nucleus detection. SC-CNN regressed the likeli-

hood of a pixel being the center of a nucleus, where high probability values were spatially 

constrained to locate in the vicinity of the center of nuclei. 

In conclusion, “deep learning” strategies have been widely applied for pathology image 

detection successfully. In this paper, we employ stacked sparse autoencoder (SSAE) and transfer 

learning technologies for detecting nuclei on liver cancer pathology images. The remainder of the 

paper is organized as follows. Section 3 briefly introduces the detection methods and Section 4 

shows our experiment results. 

2. Methods 

The stacked autoencoder is a neural network consisting of multiple layers of basic SAE (see 

Fig. 1) in which the outputs of each layer are wired to the inputs of each successive layer. In this 

paper, we consider the two layer’s SAE, which consists of two hidden layers, and the stacked sparse 

autoencoder (SSAE) to represent the two layer SAE. The architecture of SSAE is shown in Fig. 2. 

Similar to SAE, training an SSAE involves finding the optimal parameters simultaneously 

by minimizing the discrepancy between input and its reconstruction. After the optimal parameters 

are obtained, the SSAE yields a function that transforms input pixel intensities of an image patch 

to a new feature representation of nuclear structures. 

As Fig. 2 shows, with SSAE, each training patch of pixel intensities is represented 

by a high-level structured representation of nuclei or non-nuclei patches in the second hidden layer 

of the model. For the two class classification problem considered in this paper, the label of the patch 

is 1 or 0, where 1 and 0 refer to the nuclear and non-nuclear patches, respectively. Note that in the 

SSAE learning procedure, the label information is not used. Therefore, SSAE learning is 

an unsupervised learning scheme. Finally, the learned high-level representations of nuclear 

structures are utilized to train the softmax classifier. 

 
 

Figure 1 – The architecture of basic autoencoder Figure 2 – The flowchart of SSAE 

3. Experiment Results 

Our experiments employ image patches of breast cancer from the open dataset to train the 

SSAE and the softmax classifier. However, our intention of this paper is for nucleus detection on 

liver cancer pathology images. To address this issue, we use the transfer learning and sliding win-

dow techniques to accurate detect all nuclei. An example illustrating our method on the liver cancer 

pathology image is shown in Fig. 3. Left is an original image and right is the detection result, the 

green points represent the center of all nuclei. Obviously, most nuclei could be marked accurately. 
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Figure 3 – Detection results on the liver cancer pathology image. Left: original image. Right: detection result 
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Abstract. This paper firstly proposed the method of the low speed wire electrical discharge 

turning (LS-WEDT) method to fabricate micro parts. Firstly, the rotating apparatus submerged in 

working fluid is designed and manufactured to enable the low speed wire electrical discharge 

machine to generate cylindrical geometries. Besides, material removal rate, surface roughness and 

machining precision of micro shafts manufactured by the LS-WEDT are respectively investigated. 

Experimental results display that the micro-rod of 70μm in diameter and 1000μm in length can be 

successfully fabricated with high machining precision and good surface quality of the micro shaft. 

1. Introduction 

Wire electrical discharge machining (WEDM) is a thermoelectric process which can remove 

material by a series of electrical sparks generated between the workpiece and tool electrode [1]. The 

non-contact and negligible cutting force of the EDM process make it have the unique superiority in 

fabricating micro parts and components. With micromechanics and micro-electro-mechanical 

system have come to a practical period, the demand for micro parts and components with the 

diameter range of 10μm and 1mm is significantly increased, such as micro gear shafts, mechanical 

and electrical contact probes, instrument probes, micro-ejector pins and micro-tools. 

Zhao et al. [7] used the block electrode discharge grinding method to fabricate micro rods at 

a high machining speed, but the dimensional accuracy is poor because of the block electrode wear. 




