ПРЯМОЕ УПРАВЛЕНИЕ МОМЕНТОМ АСИНХРОННОГО ЭЛЕКТРОПРИВОДА ТРОЛЛЕЙБУСА

Симонович А. В., Петренко Ю. Н.

Белорусский национальный технический университет Минск, Беларусь

Системы векторного управления асинхронными двигателями (АД) обеспечивают хорошие [1].показатели регулирования Однако ИΧ функционирование в значительной мере зависит от параметров двигателя, которые, как известно, могут изменяться в процессе работы двигателя, и от точности определения скорости вращения ротора. Изменение параметров двигателя вызывает проблему перенастройки (адаптации) системы управления. Совершенствование показателей частотно-регулируемых приводов благодаря применению теории разрывных управляющих воздействий. В 1995г. компания АВВ предложила преобразователи частоты ACS600 с новой системой прямого управления моментом (ПУМ)- Direct Torque Control (DTC). Применение систем ПУМ особенно актуально для тягового привода, где главным является формирование заданного стабилизация скорости. Электропривод с ПУМ не требует использования скорости, что является существенным преимуществом троллейбуса, как с точки зрения экономических затрат, так и с точки зрения надежности работы.

Система ПУМ базируется на уравнении напряжения статора обобщенной электрической машины в неподвижной системе координат α-β и выражения для электромагнитного момента через потокосцепления статора и ротора

$$\dot{U}_{1\alpha\beta} = R_1 \dot{I}_{1\alpha\beta} + \frac{d}{dt} \dot{\Psi}_{1\alpha\beta} \tag{1}$$

$$M = \frac{3}{2} p_{\pi} \frac{\kappa_1}{\sigma L_2} \left(\Psi_{1\beta} \Psi_{2\alpha} - \Psi_{1\alpha} \Psi_{2\beta} \right) \tag{2}$$

где $K_1 = \frac{L_m}{L_1}$ — безразмерный множитель; $\sigma = 1 - \frac{L_m^2}{L_1 L_2}$ — коэффициент рассеяния машины.

Остальные величины отображены согласно общепринятым обозначениям [2]. Проведя ряд преобразований, получим выражения для проекций потокосцеплений и момента:

$$\Psi_{1\alpha} = \Psi_{1\alpha \text{ Hay}} + \Delta \Psi_{1\alpha} = \Psi_{1\alpha \text{ Hay}} + U_{1\alpha} * \Delta t \tag{3}$$

$$\Psi_{1\beta} = \Psi_{1\beta \text{ hay}} + \Delta \Psi_{1\beta} = \Psi_{1\beta \text{ hay}} + U_{1\beta} * \Delta t$$
 (4)

$$M = \frac{3}{2} p_{\Pi} \frac{\kappa_1}{\sigma L_2} |\dot{\Psi}_1| |\dot{\Psi}_2| \sin \theta \tag{5}$$

где $\Psi_{\mathbf{1}\alpha \, \mathbf{Hau}}$, $\Psi_{\mathbf{1}\beta \, \mathbf{Hau}}$ - начальные значения проекций вектора потокосцепления, до изменения вектора $\dot{U}_{\mathbf{1}}$; Δt - интервал времени действия нового вектора напряжения $\dot{U}_{\mathbf{1}}$; θ — угол между векторами $\dot{\Psi}_{\mathbf{1}}$ и $\dot{\Psi}_{\mathbf{2}}$.

Из выражений (3..5) видно, что воздействуя на значение вектора \dot{U}_1 , можно изменять значение вектора $\dot{\Psi}_1$ и угол θ . При этом будет соответствующим образом изменяться момент M. Из (5) следует, что при данных значениях модулей потокосцеплений статора и ротора $|\dot{\Psi}_1|$ и $|\dot{\Psi}_2|$, момент будет возрастать, если будет увеличиваться угол θ , т.е. если вектор $\dot{\Psi}_1$ будет поворачиваться по направлению вращения двигателя. И наоборот, момент будет уменьшаться, если угол θ будет уменьшаться, т.е. если вектор $\dot{\Psi}_1$ будет поворачиваться против направления вращения двигателя. Таким образом, получаем, что для увеличения потокосцепления и момента $\uparrow \Psi_1$, $\uparrow M$ в первом секторе $\theta = \left[0,\frac{\pi}{3}\right]$ (\uparrow - увеличение, \downarrow - уменьшение) надо установить вектор $\dot{U}_{12}(110)$; $\uparrow \Psi_1$, $\downarrow M$ - вектор $\dot{U}_{16}(101)$; $\downarrow \Psi_1$, $\uparrow M$ - вектор $\dot{U}_{13}(010)$; $\downarrow \Psi_1$, $\downarrow M$ - вектор $\dot{U}_{15}(001)$. Рассмотренные изменения Ψ_1 и M для всех секторов приведены в таблице 1.

Таблица 1.

Состояние ключей инвертора для асинхронного привода с прямым

управлением моментом.

№ сектора		Сектор	Сектор	Сектор	Сектор	Сектор	Сектор
		1	2	3	4	5	6
		$\left[0,\frac{\pi}{3}\right]$	$\left[\frac{\pi}{3},\frac{2\pi}{3}\right]$	$\left[\frac{2\pi}{3},\pi\right]$	$\left[-\pi,-\frac{2\pi}{3}\right]$	$\left[-\frac{2\pi}{3}, -\frac{\pi}{3}\right]$	$\left[-\frac{\pi}{3},0\right]$
Увелич ение потока ↑ Ψ ₁	Увеличение момента † М	\dot{U}_{12} (110)	<i>Ü</i> ₁₃ (010)	<i>Ü</i> ₁₄ (011)	<i>Ü</i> ₁₅ (001)	<i>Ū</i> ₁₆ (101)	Ü ₁₁ (100)
	Уменьшение момента ↓ <i>М</i>	- 10	Ü ₁₁ (100)	\dot{U}_{12} (110)	Ü ₁₃ (010)	\dot{U}_{14} (011)	Ü ₁₅ (001)
Умень шение потока ↓ Ψ ₁	Увеличение момента † М	\dot{U}_{13} (010)	Ü ₁₄ (011)	<i>Ū</i> ₁₅ (001)	<i>Ü</i> ₁₆ (101)	<i>U</i> ₁₁ (100)	<i>Ū</i> ₁₂ (110)
	Уменьшение момента ↓ М	13	Ü ₁₆ (101)	<i>Ū</i> ₁₁ (100)	Ü ₁₂ (110)	<i>Ū</i> ₁₃ (010)	Ü ₁₄ (011)

Таким образом, получена таблица состояний ключей инвертора, которая определяет значение потокосцепления Ψ_1 и момента двигателя M в любой точке плоскости и при этом не требует значения скорости и координатных преобразований.

ЛИТЕРАТУРА

Петренко Ю. Н., Симонович А. В. Векторное управление асинхронным приводом троллейбуса. Материалы международной научно-технической конференции "Наука — образованию, производству, экономике". Т. 1.-Мн.: УП "Технопринт". 2003–С. 225 – 228.

Опейко О.Ф., Нетренко Ю.Н. Микропроцессорные средства в автоматизированном электроприводе: учеб. пособие.-Мн.: Амалфея,2008.-340 с.